Lumiprobe citation list

Here is a list of research publications citing use of Lumiprobe products, sorted by product.

Sort by:
Date Product

1-Ethynyl pyrene

  1. Vega, B.; Wondraczek, H.; Bretschneider, L.; Näreoja, T.; Fardim, P.; Heinze, T. Preparation of reactive fibre interfaces using multifunctional cellulose derivatives. Carbohydrate Polymers, 2015, 132, 261–273. doi: 10.1016/j.carbpol.2015.05.048

3-Ethynyl perylene

  1. Beri, D.; Jakoby, M.; Howard, I.A.; Busko, D.; Richards, B.S.; Turshatov, A. Improved photon absorption in dye-functionalized silicon nanocrystals synthesized via microwave-assisted hydrosilylation. Dalton Transactions, 2020, 49(7), 2290–2299. doi: 10.1039/c9dt04497c

AF488 NHS ester

  1. Huang, D.; Yue, F.; Qiu, J.; Deng, M.; Kuang, S. Polymeric nanoparticles functionalized with muscle-homing peptides for targeted delivery of phosphatase and tensin homolog inhibitor to skeletal muscle. Acta Biomaterialia, in press. doi: 10.1016/j.actbio.2020.10.009

Alkyne NHS ester (hexynoic acid NHS ester)

  1. Kleinpenning, F.; Steigenberger, B.; Wu, W.; Heck, A.J.R. Fishing for newly synthesized proteins with phosphonate-handles. Nature Communications, 2020, 11, 3244. doi: 10.1038/s41467-020-17010-0

Alkyne Phosphoramidite, 5'-terminal

  1. Farzan, V.M.; Kvach, M.V.; Aparin, I.O.; Kireev, D.E.; Prikazchikova, T.A.; Ustinov, A.V.; Shmanai, V.V.; Shipulin, G.A.; Korshun, V.A.; Zatsepin, T.S. Novel homo Yin-Yang probes improve sensitivity in RT-qPCR detection of low copy HIV RNA. Talanta, 2019, 194, 226–232. doi: 10.1016/j.talanta.2018.10.043
  2. Taskova, M.; Uhd, J.; Miotke, L.; Kubit, M.; Bell, J.; Ji, H.P.; Astakhova, K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Analytical Chemistry, 2017, 89(8), 4363–4366. doi: 10.1021/acs.analchem.7b00646
  3. Aparin, I.O.; Farzan, V.M.; Veselova, O.A.; Chistov, A.A.; Podkolzin, A.T.; Ustinov, A.V.; Shipulin, G.A.; Formanovsky, A.A.; Korshun, V.A.; Zatsepin, T.S. 1-Phenylethynylpyrene (PEPy) as a novel blue-emitting dye for qPCR assay. Analyst, 2016, 141, 1331–1338. doi: 10.1039/c5an01767j
  4. Astakhova, I.K.; Santhosh Kumar, T.; Campbell, M.A.; Ustinov, A.V.; Korshun, V.A.; Wengel, J. Branched DNA nanostructures efficiently stabilised and monitored by novel pyrene-perylene 2'-alpha-L-amino-LNA FRET pairs. Chemical Communications, 2013, 49(5), 511-511. doi: 10.1039/c2cc37547h

Amino-11-ddUTP

  1. Bakker, R.; Mani, M.; Carthew, R.W. The Wg and Dpp morphogens regulate gene expression by modulating the frequency of transcriptional bursts. bioRxiv, preprint. doi: 10.1101/2020.01.24.918623
  2. Yu, Y.; Guo, Y.; Tian, Q.; Lan, Y.; Yeh, H.; Zhang, M.; Tasan, I.; Jain, S.; Zhao, H. An efficient gene knock-in strategy using 5'-modified double-stranded DNA donors with short homology arms. Nature Chemical Biology, 2020, 16(4), 387–390. doi: 10.1038/s41589-019-0432-1
  3. Hampoelz, B.; Schwarz, A.; Ronchi, P.; Bragulat-Teixidor, H.; Tischer, C.; Gaspar, I.; Ephrussi, A.; Schwab, Y.; Beck, M. Nuclear Pores Assemble from Nucleoporin Condensates During Oogenesis. Cell, 2019, 179, 671–686.e17. doi: 10.1016/j.cell.2019.09.022
  4. Wang, S. Single Molecule RNA FISH smFISH in Whole-Mount Mouse Embryonic Organs. Current Protocols in Cell Biology, 2019, 83(1), e79. doi: 10.1002/cpcb.79
  5. Gaspar, I.; Wippich, F.; Ephrussi, A. Enzymatic production of single molecule FISH and RNA capture probes. RNA, 2017, 23(10), 1582–1591. doi: 10.1261/rna.061184.117

Ascorbic acid

  1. Jandl, B.; Sedghiniya, S.; Carstens, A.; Astakhova, K. Peptide–Fluorophore Hydrogel as a Signal Boosting Approach in Rapid Detection of Cancer DNA. ACS Omega, 2019, 4(9), 13889–13895. doi: 10.1021/acsomega.9b01586
  2. Taskova, M.; Uhd, J.; Miotke, L.; Kubit, M.; Bell, J.; Ji, H.P.; Astakhova, K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Analytical Chemistry, 2017, 89(8), 4363–4366. doi: 10.1021/acs.analchem.7b00646
  3. Samuelsen, S.V.; Maity, A.; Nybo, M.; Macaubas, C.; Lønstrup, L.; Balboni, I.M.; Mellins, E.D.; Astakhova, K. Novel Phospholipid-Protein Conjugates Allow Improved Detection of Antibodies in Patients with Autoimmune Diseases. PLoS One, 2016, 11(6), e0156125. doi: 10.1371/journal.pone.0156125
  4. Li, Z.; Liu, Z.; Chen, Z.; Ju, E.; Li, W.; Ren, J.; Qu, X. Bioorthogonal chemistry for selective recognition, separation and killing bacteria over mammalian cells. Chemical Communications, 2016, 52(17), 3482–3485. doi: 10.1039/c5cc10625g
  5. Maity, A.; Macaubas, C.; Mellins, E.; Astakhova, K. Synthesis of Phospholipid-Protein Conjugates as New Antigens for Autoimmune Antibodies. Molecules, 2015, 20(6), 10253–10263. doi: 10.3390/molecules200610253

Azide-PEG3-Azide

  1. Tolentino, M.Q.; Hartmann, A.K.; Loe, D.T.; Rouge, J.L. Controlled release of small molecules and proteins from DNA-surfactant stabilized metal organic frameworks. Journal of Materials Chemistry B, 2020, 8(26), 5627–5635. doi: 10.1039/d0tb00767f

Azidobutyric acid NHS ester

  1. Wang, Y.; Yao, J.; Cai, L.; Liu, T.; Wang, X.; Zhang, Y.; Zhou, Z.; Li, T.; Liu, M.; Lai, R.; Liu, X. Bone-targeted extracellular vesicles from mesenchymal stem cells for osteoporosis therapy. Research Square, preprint. doi: 10.21203/rs.3.rs-18279/v1
  2. Kleinpenning, F.; Steigenberger, B.; Wu, W.; Heck, A.J.R. Fishing for newly synthesized proteins with phosphonate-handles. Nature Communications, 2020, 11, 3244. doi: 10.1038/s41467-020-17010-0
  3. Blanchard, A.T.; Bazrafshan, A.S.; Yi, J.; Eisman, J.T.; Yehl, K.M.; Bian, T.; Mugler, A.; Salaita, K. Highly Polyvalent DNA Motors Generate 100+ pN of Force via Autochemophoresis. Nano Letters, 2019, 19(10), 6977–6986. doi: 10.1021/acs.nanolett.9b02311
  4. Hou, W.; Li, Y.; Kang, W.; Wang, X.; Wu, X.; Wang, S.; Liu, F. Real-time analysis of quantum dot labeled single porcine epidemic diarrhea virus moving along the microtubules using single particle tracking. Scientific Reports, 2019, 9, 1307. doi: 10.1038/s41598-018-37789-9
  5. Kuznetsov, A.E.; Komarova, N.V.; Kuznetsov, E.V.; Andrianova, M.S.; Grudtsov, V.P.; Rybachek, E.N.; Puchnin, K.V.; Ryazantsev, D.V.; Saurov, A.N. Integration of a field effect transistor-based aptasensor under a hydrophobic membrane for bioelectronic nose applications. Biosensors and Bioelectronics, 2019, 129, 29–35. doi: 10.1016/j.bios.2019.01.013
  6. Kumar, P.; Kuhlmann, F.M.; Chakroborty, S.; Bourgeois, A.L.; Foulke-Abel, J.; Tumala, B.; Vickers, T.J.; Sack, D.A.; DeNearing, B.; Harro, C.D.; Wright, W.S.; Gildersleeve, J.C.; Ciorba, M.A.; Santhanam, S.; Porter, C.K.; Gutierrez, R.L.; Prouty, M.G.; Riddle, M.S.; Polino, A.; Sheikh, A.; Donowitz, M.; Fleckenstein, J.M. Enterotoxigenic Escherichia coli blood group A interactions intensify diarrheal severity. The Journal of Clinical Investigation, 2018, 128(8), 3298–3311. doi: 10.1172/JCI97659
  7. Andrianova, M.; Komarova, N.; Grudtsov, V.; Kuznetsov, E.; Kuznetsov, A. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase. Sensors, 2018, 18, 49. doi: 10.3390/s18010049
  8. Kuznetsov, A.; Komarova, N.; Andrianova, M.; Grudtsov, V.; Kuznetsov, E. Aptamer based vanillin sensor using an ion-sensitive field-effect transistor. Microchimica Acta, 2018, 185(1), 3. doi: 10.1007/s00604-017-2586-4
  9. Taskova, M.; Uhd, J.; Miotke, L.; Kubit, M.; Bell, J.; Ji, H.P.; Astakhova, K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Analytical Chemistry, 2017, 89(8), 4363–4366. doi: 10.1021/acs.analchem.7b00646
  10. Bu, J.; Pilo, A.L.; McLuckey, S.A. Gas Phase Click Chemistry via Ion/Ion Reactions. International Journal of Mass Spectrometry, 2015, 390, 118–123. doi: 10.1016/j.ijms.2015.05.010
  11. Potapova, I.; Eglin, D.; Laschke, M.W.; Bischoff, M.; Richards, R.G.; Moriarty, T.F. Two-step labeling of Staphylococcus aureus with Lysostaphin-Azide and DIBO-Alexa using click chemistry. Journal of Microbiological Methods, 2013, 92(1), 90-98. doi: 10.1016/j.mimet.2012.11.004

BDP 558/568 NHS ester

  1. Tabe, H.; Sukenobe, K.; Kondo, T.; Sakurai, A.; Maruo, M.; Shimauchi, A.; Hirano, M.; Uno, S.-N.; Kamiya, M.; Urano, Y.; Matsushita, M.; Fujiyoshi, S. Cryogenic Fluorescence Localization Microscopy of Spectrally Selected Individual FRET Pairs in a Water Matrix. The Journal of Physical Chemistry B, 2018, 122(27), 6906–6911. doi: 10.1021/acs.jpcb.8b03977

BDP 581/591 NHS ester

  1. Tabe, H.; Sukenobe, K.; Kondo, T.; Sakurai, A.; Maruo, M.; Shimauchi, A.; Hirano, M.; Uno, S.-N.; Kamiya, M.; Urano, Y.; Matsushita, M.; Fujiyoshi, S. Cryogenic Fluorescence Localization Microscopy of Spectrally Selected Individual FRET Pairs in a Water Matrix. The Journal of Physical Chemistry B, 2018, 122(27), 6906–6911. doi: 10.1021/acs.jpcb.8b03977

BDP 630/650 X NHS ester

  1. Grätz, L.; Tropmann, K.; Bresinsky, M.; Müller, C.; Bernhardt, G.; Pockes, S. NanoBRET binding assay for histamine H2 receptor ligands using live recombinant HEK293T cells. Scientific Reports, 2020, 10, 13288. doi: 10.1038/s41598-020-70332-3
  2. Gruber, C.G.; Pegoli, A.; Müller, C.; Grätz, L.; She, X.; Keller, M. Differently fluorescence-labelled dibenzodiazepinone-type muscarinic acetylcholine receptor ligands with high M2R affinity. RSC Medicinal Chemistry, 2020, 11(7), 823–832. doi: 10.1039/D0MD00137F
  3. Zhong, X.; Shtukenberg, A.G.; Liu, M.; Olson, I.A.; Weck, M.; Ward, M.D.; Kahr, B. Dislocation Generation by Microparticle Inclusions. Crystal Growth & Design, 2019, 19(11), 6649–6655. doi: 10.1021/acs.cgd.9b01041

BDP 630/650 amine

  1. Zhang, Y.; Zhu, X.; Chen, X.; Chen, Q.; Zhou, W.; Guo, Q.; Lu, Y.; Li, C.; Zhang, Y.; Liang, D.; Sun, T.; Wei, X.; Jiang, C. Activated Platelets-Targeting Micelles with Controlled Drug Release for Effective Treatment of Primary and Metastatic Triple Negative Breast Cancer. Advanced Functional Materials, 2019, 29(13), 1806620. doi: 10.1002/adfm.201806620
  2. Zhang, Y.; Guo, Z.; Cao, Z.; Zhou, W.; Zhang, Y.; Chen, Q.; Lu, Y.; Chen, X.; Guo, Q.; Li, C.; Liang, D.; Sun, T.; Jiang, C. Endogenous albumin-mediated delivery of redox-responsive paclitaxel-loaded micelles for targeted cancer therapy. Biomaterials, 2018, 183, 243–257. doi: 10.1016/j.biomaterials.2018.06.002

BDP 630/650 carboxylic acid

  1. Pfister, J.; Lichius, A.; Summer, D.; Haas, H.; Kanagasundaram, T.; Kopka, K.; Decristoforo, C. Live-cell imaging with Aspergillus fumigatus-specific fluorescent siderophore conjugates. Scientific Reports, 2020, 10, 15519. doi: 10.1038/s41598-020-72452-2
  2. Mitronova, G.Y.; Lukinavičius, G.; Butkevich, A.N.; Kohl, T.; Belov, V.N.; Lehnart, S.E.; Hell, S.W. High-Affinity Functional Fluorescent Ligands for Human β-Adrenoceptors. Scientific Reports, 2017, 7, 12319. doi: 10.1038/s41598-017-12468-3

BDP FL DBCO

  1. Islam, M.R.; Nguy, C.; Pandit, S.; Lyon, L.A. Design and Synthesis of Core–Shell Microgels with One‐Step Clickable Crosslinked Cores and Ultralow Crosslinked Shells. Macromolecular Chemistry and Physics, 2020, 221(19), 2000156. doi: 10.1002/macp.202000156

BDP FL NHS ester

  1. Volz, J.; Kusch, C.; Beck, S.; Popp, M.; Vögtle, T.; Meub, M.; Scheller, I.; Heil, H.S.; Preu, J.; Schuhmann, M.K.; Hemmen, K.; Premsler, T.; Sickmann, A.; Heinze, K.G.; Stegner, D.; Stoll, G.; Braun, A.; Sauer, M.; Nieswandt, B. BIN2 orchestrates platelet calcium signaling in thrombosis and thrombo-inflammation. Journal of Clinical Investigation, in press. doi: 10.1172/JCI136457
  2. Susnik, E.; Taladriz-Blanco, P.; Drasler, B.; Balog, S.; Petri-Fink, A.; Rothen-Rutishauser, B. Increased Uptake of Silica Nanoparticles in Inflamed Macrophages but Not upon Co-Exposure to Micron-Sized Particles. Cells, 2020, 9(9), 2099. doi: 10.3390/cells9092099
  3. FitzGerald, L.I.; Aurelio, L.; Chen, M.; Yuen, D.; Rennick, J.J.; Graham, B.; Johnston, A.P.R. A molecular sensor to quantify the localization of proteins, DNA and nanoparticles in cells. Nature Communications, 2020, 11(1), 4482. doi: 10.1038/s41467-020-18082-8
  4. Pereira de Sousa, I.; Gourmel, C.; Berkovska, O.; Burger, M.; Leroux, J.-C. A microparticulate based formulation to protect therapeutic enzymes from proteolytic digestion: phenylalanine ammonia lyase as case study. Scientific Reports, 2020, 10, 3651. doi: 10.1038/s41598-020-60463-y
  5. Viegas, A.; Dollinger, P.; Verma, N.; Kubiak, J.; Viennet, T.; Seidel, C.A.M.; Gohlke, H.; Etzkorn, M.; Kovacic, F.; Jaeger, K.-E. Structural and dynamic insights revealing how lipase binding domain MD1 of Pseudomonas aeruginosa foldase affects lipase activation. Scientific Reports, 2020, 10, 3578. doi: 10.1038/s41598-020-60093-4
  6. Korevaar, P.A.; Kaplan, C.N.; Grinthal, A.; Rust, R.M.; Aizenberg, J. Non-equilibrium signal integration in hydrogels. Nature Communications, 2020, 11, 386. doi: 10.1038/s41467-019-14114-0
  7. Martin, C.; Brachet, G.; Colas, C.; Allard-Vannier, E.; Kizlik-Masson, C.; Esnault, C.; Respaud, R.; Denevault-Sabourin, C.; Chourpa, I.; Gouilleux-Gruart, V.; Viaud-Massuard, M.-C.; Joubert, N. In Vitro Characterization and Stability Profiles of Antibody-Fluorophore Conjugates Derived from Interchain Cysteine Cross-Linking or Lysine Bioconjugation. Pharmaceuticals, 2019, 12(4), 176. doi: 10.3390/ph12040176
  8. Simpson, J.D.; Ediriweera, G.R.; Howard, C.B.; Fletcher, N.L.; Bell, C.A.; Thurecht, K.J. Polymer design and component selection contribute to uptake, distribution & trafficking behaviours of polyethylene glycol hyperbranched polymers in live MDA-MB-468 breast cancer cells. Biomaterials Science, 2019, 7(11), 4661–4674. doi: 10.1039/c9bm00957d
  9. Lee, S.A.; Biteen, J.S. Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 5764–5769. doi: 10.1021/acs.jpclett.9b02480
  10. São Pedro, M.N.; Azevedo, A.M.; Aires-Barros, M.R.; Soares, R.R.G. Minimizing the influence of fluorescent tags on IgG partition in PEG-salt aqueous two-phase systems for rapid screening applications. Biotechnology Journal, 2019, 14(8), 1800640. doi: 10.1002/biot.201800640
  11. Burla, F.; Tauber, J.; Dussi, S.; van der Gucht, J.; Koenderink, G.H. Stress management in composite biopolymer networks. Nature Physics, 2019, 15(6), 549–553. doi: 10.1038/s41567-019-0443-6
  12. Qi, T.; Chen, B.; Wang, Z.; Du, H.; Liu, D.; Yin, Q.; Liu, B.; Zhang, Q.; Wang, Y. A pH-Activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy. Biomaterials, 2019, 213, 119219. doi: 10.1016/j.biomaterials.2019.05.030
  13. Steinmetz, H.P.; Rudnick-Glick, S.; Natan, M.; Banin, E.; Margel, S. Poly(styryl bisphosphonate) nanoparticles with a narrow size distribution: Synthesis, characterization and antibacterial applications. European Polymer Journal, 2019, 116, 65–73. doi: 10.1016/j.eurpolymj.2019.04.007
  14. Reichart, F.; Maltsev, O.V.; Kapp, T.G.; Räder, A.F.B.; Weinmüller, M.; Marelli, U.K.; Notni, J.; Wurzer, A.; Beck, R.; Wester, H.-J.; Steiger, K.; Di Maro, S.; Di Leva, F.S.; Marinelli, L.; Nieberler, M.; Reuning, U.; Schwaiger, M.; Kessler, H. Selective Targeting of Integrin αvβ8 by a Highly Active Cyclic Peptide. Journal of Medicinal Chemistry, 2019, 62(4), 2024–2037. doi: 10.1021/acs.jmedchem.8b01588
  15. Bond, M.J.; Bleiler, M.; Harrison, L.E.; Scocchera, E.W.; Nakanishi, M.; G-Dayanandan, N.; Keshipeddy, S.; Rosenberg, D.W.; Wright, D.L.; Giardina, C. Spindle assembly disruption and cancer cell apoptosis with a CLTC-binding compound. Molecular Cancer Research, 2018, 16(9), 1361–1372. doi: 10.1158/1541-7786.MCR-18-0178
  16. Alferova, V.A.; Shuvalov, M.V.; Suchkova, T.A.; Proskurin, G.V.; Aparin, I.O.; Rogozhin, E.A.; Novikov, R.A.; Solyev, P.N.; Chistov, A.A.; Ustinov, A.V.; Tyurin, A.P.; Korshun, V.A. 4-Chloro-L-kynurenine as fluorescent amino acid in natural peptides. Amino Acids, 2018, 50(12), 1697–1705. doi: 10.1007/s00726-018-2642-3
  17. Poreba, M.; Rut, W.; Vizovisek, M.; Groborz, K.; Kasperkiewicz, P.; Finlay, D.; Vuori, K.; Turk, D.; Turk, B.; Salvesen, G.; Drag, M. Selective imaging of human cathepsin L in breast cancer by fluorescent activity-based probes. Chemical Science, 2018, 9(8), 2113–2129. doi: 10.1039/C7SC04303A
  18. Grube, L.; Dellen, R.; Kruse, F.; Schwender, H.; Stuehler, K.; Poschmann, G. Mining the secretome of C2C12 muscle cells: Data dependent experimental approach to analyze protein secretion using label-free quantification and peptide based analysis. Journal of Proteome Research, 2018, 17(2), 879–890. doi: 10.1021/acs.jproteome.7b00684
  19. Wang, C.; Niederstrasser, H.; Douglas, P.M.; Lin, R.; Jaramillo, J.; Li, Y.; Olswald, N.W.; Zhou, A.; McMillan, E.A.; Mendiratta, S.; Wang, Z.; Zhao, T.; Lin, Z.; Luo, M.; Huang, G.; Brekken, R.A.; Posner, B.A.; MacMillan, J.B.; Gao, J.; White, M.A. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nature Communications, 2017, 8, 2270. doi: 10.1038/s41467-017-02332-3
  20. Gaspar, I.; Wippich, F.; Ephrussi, A. Enzymatic production of single molecule FISH and RNA capture probes. RNA, 2017, 23(10), 1582–1591. doi: 10.1261/rna.061184.117
  21. Perez-Anes, A.; Szarpak-Jankowska, A.; Jary, D.; Auzély-Velty, R. β-CD-Functionalized Microdevice for Rapid Capture and Release of Bacteria. ACS Applied Materials & Interfaces, 2017, 9(16), 13928–13938. doi: 10.1021/acsami.7b02194
  22. Löschmann, N.; Michaelis, M.; Rothweiler, F.; Voges, Y.; Balónová, B.; Blight, B.A.; Cinatl, J. ABCB1 as predominant resistance mechanism in cells with acquired SNS-032 resistance. Oncotarget, 2016, 7(36), 58051–58064. doi: 10.18632/oncotarget.11160
  23. Wang, C.; Wang, Y.; Li, Y.; Bodemann, B.; Zhao, T.; Ma, X.; Huang, G.; Hu, Z.; DeBerardinis, R.J.; White, M.A.; Gao, J. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nature Communications, 2015, 6, 8524. doi: 10.1038/ncomms9524

BDP FL alkyne

  1. Du, T.; Buenbrazo, N.; Kell, L.; Rahmani, S.; Sim, L.; Withers, S.G.; DeFrees, S.; Wakarchuk, W.;. A Bacterial Expression Platform for Production of Therapeutic Proteins Containing Human-like O-Linked Glycans. Cell Chemical Biology, 2019, 26(2), 203–212.e5. doi: 10.1016/j.chembiol.2018.10.017
  2. Daryaee, F.; Zhang, Z.; Gogarty, K.R.; Li, Y.; Merino, J.; Fisher, S.L.; Tonge, P.J. A quantitative mechanistic PK/PD model directly connects Btk target engagement and in vivo efficacy. Chemical Science, 2017, 8(5), 3434–3443. doi: 10.1039/c6sc03306g
  3. Kubota, T.; Durek, T.; Dang, B.; Finol-Urdaneta, R.K.; Craik, D.J.; Kent, S.B.H.; French, R.J.; Bezanilla, F.; Correa, A.M. Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET. Proceedings of the National Academy of Sciences of the U.S.A., 2017, 114(10), E1857–1865. doi: 10.1073/pnas.1700453114

BDP FL amine

  1. Zhu, M.; Lu, D.; Wu, S.; Lian, Q.; Wang, W.; Lyon, A.; Wang, W.; Bartolo, P.; Saunders, B.R. Using green emitting pH-responsive nanogels to report environmental changes within hydrogels: A nanoprobe for versatile sensing. Nanoscale, 2019, 11(24), 11484–11495. doi: 10.1039/c9nr00989b

BDP FL azide

  1. Rodríguez-Hakim, M.; Anand, S.; Tajuelo, J.; Yao, Z.; Kannan, A.; Fuller, G.G. Asphaltene-induced spontaneous emulsification: Effects of interfacial co-adsorption and viscoelasticity. Journal of Rheology, 2020, 64(4), 799–816. doi: 10.1122/1.5145307
  2. Antonov, S.A.; Novosadova, E.V.; Kobylansky, A.G.; Tarantul, V.Z.; Grivennikov, I.A. A Hybrid Detection Method Based on Peroxidase-mediated Signal Amplification and Click Chemistry for Highly Sensitive Background-free Immunofluorescent Staining. Journal of Histochemistry & Cytochemistry, 2019, 67(10), 771–782. doi: 10.1369/0022155419864113
  3. Nuhn, L.; Boli, E.; Massa, S.; Vandenberghe, I.; Movahedi, K.; Devreese, B.; Van Ginderachter, J.; De Geest, B.G. Targeting protumoral tumor-associated macrophages with nanobody-functionalized nanogels through SPAAC ligation. Bioconjugate Chemistry, 2018, 29(7), 2394–2405. doi: 10.1021/acs.bioconjchem.8b00319

BDP FL carboxylic acid

  1. Ridolfo, R.; Tavakoli, S.; Junnuthula, V.; Williams, D.S.; Urtti, A.; van Hest, J.C.M. Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium. Biomacromolecules, in press. doi: 10.1021/acs.biomac.0c00726
  2. Ridolfo, R.; Arends, J.J.; van Hest, J.C.M.; Williams, D.S. Worm-like nanovector with enhanced drug loading using blends of biodegradable block copolymers. Biomacromolecules, 2020, 21(6), 2199–2207. doi: 10.1021/acs.biomac.0c00169
  3. Möltgen, S.; Piumatti, E.; Massafra, G.M.; Metzger, S.; Jaehde, U.; Kalayda, G.V. Cisplatin Protein Binding Partners and Their Relevance for Platinum Drug Sensitivity. Cells, 2020, 9, 1322. doi: 10.3390/cells9061322
  4. Ferrer-González, E.; Fujita, J.; Yoshizawa, T.; Nelson, J.M.; Pilch, A.J.; Hillman, E.; Ozawa, M.; Kuroda, N.; Al-Tameemi, H.M.; Boyd, J.M.; LaVoie, E.J.; Matsumura, H.; Pilch, Daniel S. Structure-Guided Design of a Fluorescent Probe for the Visualization of FtsZ in Clinically Important Gram-Positive and Gram-Negative Bacterial Pathogens. Scientific Reports, 2019, 9, 20092. doi: 10.1038/s41598-019-56557-x

BDP FL hydrazide

  1. Roloff, A.; Nirmalananthan-Budau, N.; Rühle, B.; Borcherding, H.; Thiele, T.; Schedler, U.; Resch-Genger, U. Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores. Analytical Chemistry, 2019, 91(14), 8827–8834. doi: 10.1021/acs.analchem.8b05515
  2. Liu, R.; Vairaprakash, P.; Lindsey, J.S. Self-assembly with fluorescence readout in a free base dipyrrin–polymer triggered by metal ion binding in aqueous solution. New Journal of Chemistry, 2019, 43(24), 9711–9724. doi: 10.1039/c9nj01787a

BDP FL maleimide

  1. Koch, S.; Seinen, A.-B.; Kamel, M.; Kuckla, D.; Monzel, C.; Kedrov, A.; Driessen, A.J.M. Single-molecule analysis of dynamics and interactions: of the SecYEG translocon. FEBS Journal, in press. doi: 10.1111/febs.15596
  2. São Pedro, M.N.; Azevedo, A.M.; Aires-Barros, M.R.; Soares, R.R.G. Minimizing the influence of fluorescent tags on IgG partition in PEG-salt aqueous two-phase systems for rapid screening applications. Biotechnology Journal, 2019, 14(8), 1800640. doi: 10.1002/biot.201800640
  3. Doh, J.K.; White, J.D.; Zane, H.K.; Chang, Y.H.; López, C.S.; Enns, C.A.; Beatty, K.E. VIPER is a genetically encoded peptide tag for fluorescence and electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12961–12966. doi: 10.1073/pnas.1808626115
  4. Buecheler, J.W.; Winzer, M.; Tonillo, J.; Weber, C.A.; Gieseler, H. Impact of Payload Hydrophobicity on Stability of Antibody-Drug-Conjugates. Molecular Pharmaceutics, 2018, 15(7), 2656–2664. doi: 10.1021/acs.molpharmaceut.8b00177
  5. Mardirossian, M.; Pérébaskine, N.; Benincasa, M.; Gambato, S.; Hofmann, S.; Huter, P.; Müller, C.; Hilpert, K.; Innis, C.A.; Tossi, A.; Wilson, D.N. The Dolphin Proline-Rich Antimicrobial Peptide Tur1A Inhibits Protein Synthesis by Targeting the Bacterial Ribosome. Cell Chemical Biology, 2018, 25(5), 530–539.e7. doi: 10.1016/j.chembiol.2018.02.004

BDP R6G NHS ester

  1. Lee, S.A.; Biteen, J.S. Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 5764–5769. doi: 10.1021/acs.jpclett.9b02480

BDP R6G alkyne

  1. Zhang, C.T.; Liu, Y.; Wang, X.; Wang, X.; Kolle, S.; Balazs, A.C.; Aizenberg, J. Patterning non-equilibrium morphologies in stimuli-responsive gels through topographical confinement. Soft Matter, 2020, 16(6), 1463–1472. doi: 10.1039/c9sm02221j

Biotin PEG3 azide

  1. Wang, Y.; Dattmore, D.A.; Wang, W:; Pohnert, G.; Wolfram, S.; Zhang, J.; Yang, R.; Decker, E.A.; Lee, K.S.S.; Zhang, G. trans, trans-2,4-decadienal, a lipid peroxidation product, induces inflammatory responses via Hsp90- or 14–3-3ζ-dependent mechanisms. Journal of Nutritional Biochemistry, 2020, 76, 108286. doi: 10.1016/j.jnutbio.2019.108286
  2. Shen, Y.; Yang, S.; Hu, X.; Zhang, M.; Ma, X.; Wang, Z.; Hou, Y.; Bai, G. Natural product puerarin activates Akt and ameliorates glucose and lipid metabolism dysfunction in hepatic cells. Journal of Functional Foods, 2019, 55, 296–304. doi: 10.1016/j.jff.2019.02.035
  3. Wang, E.; Hunter, C.P. SID-1 Functions in Multiple Roles To Support Parental RNAi in Caenorhabditis elegans. Genetics, 2017, 207(2), 547–557. doi: 10.1534/genetics.117.300067
  4. Bruckman, M.A.; Czapar, A.E.; VanMeter, A.; Randolph, L.N.; Steinmetz, N.F. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 2016, 231, 103–113. doi: 10.1016/j.jconrel.2016.02.045

Biotin alkyne

  1. Rink, W.M.; Thomas, F. Decoration of Coiled-Coil Peptides with N-Cysteine Peptide Thioesters As Cyclic Peptide Precursors Using Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) Click Reaction. Organic Letters, 2018, 20(23), 7493–7497. doi: 10.1021/acs.orglett.8b03261
  2. Cui, X.-Y.; Sun, N.-N.; Xie, X.-N.; Sun, W.-C.; Zhao, Q.; Liu, N. Detection of Newly Synthesized Proteins via Metabolic Incorporation of Non-natural Amino Acid. Chinese Journal of Analytical Chemistry, 2018, 46(11), 1808–1813. doi: 10.1016/s1872-2040(18)61125-9
  3. Ullrich, M.; Liang, V.; Chew, Y.L.; Banister, S.; Song, X.; Zaw, T.; Lam, H.; Berber, S.; Kassiou, M.; Nicholas, H.R. et al. Bio-orthogonal labeling as a tool to visualize and identify newly synthesized proteins in Caenorhabditis elegans. Nature Protocols, 2014, 9(9), 2237-2255. doi: 10.1038/nprot.2014.150

Copper(II)-TBTA complex, 10 mM in 55% aq. DMSO

  1. Wang, Y.; Kathiresan, V.; Chen, Y.; Hu, Y.; Jiang, W.; Bai, G.; Liu, G.; Qin, P.Z.; Fang, X. Posttranscriptional Site-Directed Spin Labeling of Large RNAs with an Unnatural Base Pair System Under Non-Denaturing Conditions. ChemRxiv, preprint. doi: 10.26434/chemrxiv.12058914
  2. Zhao, Meng and Börner, Richard and Sigel, Roland K. O. and Freisinger, Eva. Site-Specific Dual-Color Labeling of Long RNAs. Methods in Molecular Biology, 2020, 2106, 253–270. doi: 10.1007/978-1-0716-0231-7_16
  3. Blanchard, A.T.; Bazrafshan, A.S.; Yi, J.; Eisman, J.T.; Yehl, K.M.; Bian, T.; Mugler, A.; Salaita, K. Highly Polyvalent DNA Motors Generate 100+ pN of Force via Autochemophoresis. Nano Letters, 2019, 19(10), 6977–6986. doi: 10.1021/acs.nanolett.9b02311
  4. Saqr, A.; Vakili, M.R.; Huang, Y.-H.; Lai, R.; Lavasanifar, A. Development of Traceable Rituximab-Modified PEO-Polyester Micelles by Postinsertion of PEG-phospholipids for Targeting of B-cell Lymphoma. ACS Omega, 2019, 4(20), 18867–18879. doi: 10.1021/acsomega.9b02910
  5. Jandl, B.; Sedghiniya, S.; Carstens, A.; Astakhova, K. Peptide–Fluorophore Hydrogel as a Signal Boosting Approach in Rapid Detection of Cancer DNA. ACS Omega, 2019, 4(9), 13889–13895. doi: 10.1021/acsomega.9b01586
  6. Shi, L.; Qalieh, A.; Lam, M.M.; Keil, J.M.; Kwan, K.Y. Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion. Nature Communications, 2019, 10, 2588. doi: 10.1038/s41467-019-10411-w
  7. Reyes-Ruiz, J.M.; Osuna-Ramos, J.F.; Bautista-Carbajal, P.; Jaworski, E.; Soto-Acosta, R.; Cervantes-Salazar, M.; Angel-Ambrocio, A.H.; Castillo-Munguía, J.P.; Chávez-Munguía, B.; De Nova-Ocampo, M.; Routh, A.; del Ángel, R.M.; Salas-Benito, J.S. Mosquito cells persistently infected with dengue virus produce viral particles with host-dependent replication. Virology, 2019, 531, 1–18. doi: 10.1016/j.virol.2019.02.018
  8. Elrod, N.R.; Jaworski, E.A.; Ji, P.; Wagner, E.J.; Routh, A. Development of Poly(A)-ClickSeq as a Tool Enabling Simultaneous Genome-wide Poly(A)-site identification and Differential Expression Analysis. Methods, 2019, 155, 20–29. doi: 10.1016/j.ymeth.2019.01.002
  9. Kuznetsov, A.E.; Komarova, N.V.; Kuznetsov, E.V.; Andrianova, M.S.; Grudtsov, V.P.; Rybachek, E.N.; Puchnin, K.V.; Ryazantsev, D.V.; Saurov, A.N. Integration of a field effect transistor-based aptasensor under a hydrophobic membrane for bioelectronic nose applications. Biosensors and Bioelectronics, 2019, 129, 29–35. doi: 10.1016/j.bios.2019.01.013
  10. Domljanovic, I.; Hansen, A.H.; Hansen, L.H.; Klitgaard, J.K.; Taskova, M.; Astakhova, K. Studies of Impending Oligonucleotide Therapeutics in Simulated Biofluids. Nucleic Acid Therapeutics, 2018, 28(6), 348–356. doi: 10.1089/nat.2017.0704
  11. van Hall-Beauvais, A.; Zhao, Y.; Urul, D.A.; Long, M.J.C.; Aye, Y. Single-Protein-Specific Redox Targeting in Live Mammalian Cells and C. elegans. Current Protocols in Chemical Biology, 2018, 10(3), e43. doi: 10.1002/cpch.43
  12. Schrand, B.; Clark, E.; Levay, A.; Capote, A.R.; Martinez, O.; Brenneman, R.; Castro, I.; Gilboa, E. Hapten-mediated recruitment of polyclonal antibodies to tumors engenders antitumor immunity. Nature Communications, 2018, 9, 3348. doi: 10.1038/s41467-018-05566-x
  13. Surya, S.L.; Long, M.J.C.; Urul, D.A.; Zhao, Y.; Mercer, E.J.; EIsaid, I.M.; Evans, T.; Aye, Y. Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor. ACS Chemical Biology, 2018, 13(7), 1824–1831. doi: 10.1021/acschembio.7b00925
  14. Yang, J.; Jiang, Q.; He, L.; Zhan, P.; Liu, Q.; Liu, S.; Fu, M.; Liu, J.; Li, C.; Ding, B. Self-Assembled Double-Bundle DNA Tetrahedron for Efficient Antisense Delivery. ACS Applied Materials & Interfaces, 2018, 10(28), 23693–23699. doi: 10.1021/acsami.8b07889
  15. Long, M.J.C.; Urul, D.A.; Chawla, S.; Lin, H.-Y.; Zhao, Y.; Haegele, J.A.; Wang, Y.; Aye, Y. Precision Electrophile Tagging in Caenorhabditis elegans. Biochemistry, 2018, 57(2), 216–220. doi: 10.1021/acs.biochem.7b00642
  16. Andrianova, M.; Komarova, N.; Grudtsov, V.; Kuznetsov, E.; Kuznetsov, A. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase. Sensors, 2018, 18, 49. doi: 10.3390/s18010049
  17. Jaworski, E.; Routh, A. ClickSeq: Replacing Fragmentation and Enzymatic Ligation with Click-Chemistry to Prevent Sequence Chimeras. Methods in Molecular Biology, 2018, 1712, 71–85. doi: 10.1007/978-1-4939-7514-3_6
  18. Kuznetsov, A.; Komarova, N.; Andrianova, M.; Grudtsov, V.; Kuznetsov, E. Aptamer based vanillin sensor using an ion-sensitive field-effect transistor. Microchimica Acta, 2018, 185(1), 3. doi: 10.1007/s00604-017-2586-4
  19. Routh, A.; Ji, P.; Jaworski, E.; Xia, Z.; Li, W.; Wagner, E.J. Poly(A)-ClickSeq: click-chemistry for next-generation 3′-end sequencing without RNA enrichment or fragmentation. Nucleic Acids Research, 2017, 45(12), e112. doi: 10.1093/nar/gkx286
  20. Jaworski, E.; Routh, A. Parallel ClickSeq and Nanopore sequencing elucidates the rapid evolution of defective-interfering RNAs in Flock House virus. PLOS Pathogens, 2017, 13(5), e1006365. doi: 10.1371/journal.ppat.1006365
  21. Taskova, M.; Uhd, J.; Miotke, L.; Kubit, M.; Bell, J.; Ji, H.P.; Astakhova, K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Analytical Chemistry, 2017, 89(8), 4363–4366. doi: 10.1021/acs.analchem.7b00646
  22. Taskova, M.; Madsen, C.S.; Jensen, K.J.; Hansen, L.H.; Vester, B.; Astakhova, K. Antisense oligonucleotides internally labeled with peptides show improved target recognition and stability to enzymatic degradation. Bioconjugate Chemistry, 2017, 28(3), 768–774. doi: 10.1021/acs.bioconjchem.6b00567
  23. Long, M.J.C.; Parvez, S.; Zhao, Y.; Surya, S.L.; Wang, Y.; Zhang, S.; Aye, Y. Akt3 is a privileged first responder in isozyme-specific electrophile response. Nature Chemical Biology, 2017, 13(3), 333–338. doi: 10.1038/nchembio.2284
  24. Westergaard Mulberg, M.; Taskova, M.; Thomsen, R.P.; Okholm, A.H.; Kjems, J.; Astakhova, K. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods. Chembiochem, 2017, 18(16), 1599–1603. doi: 10.1002/cbic.201700125
  25. Shi, P.; Ju, E.; Yan, Z.; Gao, N.; Wang, J.; Hou, J.; Zhang, Y.; Ren, J.; Qu, X. Spatiotemporal control of cell-cell reversible interactions using molecular engineering. Nature communications, 2016, 7, 13088. doi: 10.1038/ncomms13088
  26. Samuelsen, S.V.; Maity, A.; Nybo, M.; Macaubas, C.; Lønstrup, L.; Balboni, I.M.; Mellins, E.D.; Astakhova, K. Novel Phospholipid-Protein Conjugates Allow Improved Detection of Antibodies in Patients with Autoimmune Diseases. PLoS One, 2016, 11(6), e0156125. doi: 10.1371/journal.pone.0156125
  27. Seo, K.-H.; Chu, H.-S.; Yoo, T.H.; Lee, S.-G.; Won, J.-I. Separation efficiency of free-solution conjugated electrophoresis with drag-tags incorporating a synthetic amino acid. Electrophoresis, 2016, 37(5–6), 818–825. doi: 10.1002/elps.201500506
  28. Li, Z.; Liu, Z.; Chen, Z.; Ju, E.; Li, W.; Ren, J.; Qu, X. Bioorthogonal chemistry for selective recognition, separation and killing bacteria over mammalian cells. Chemical Communications, 2016, 52(17), 3482–3485. doi: 10.1039/c5cc10625g
  29. Maity, A.; Macaubas, C.; Mellins, E.; Astakhova, K. Synthesis of Phospholipid-Protein Conjugates as New Antigens for Autoimmune Antibodies. Molecules, 2015, 20(6), 10253–10263. doi: 10.3390/molecules200610253
  30. Abel, G.R.; Cao, B.H.; Hein, J.E.; Ye, T. Covalent, sequence-specific attachment of long {DNA} molecules to a surface using DNA-templated click chemistry. Chemical Communications, 2014, 50(60), 8131–8133. doi: 10.1039/c4cc02900c
  31. Stuart, C.H.; Horita, D.A.; Thomas, M.J.; Salsbury, F.R.; Lively, M.O.; Gmeiner, W.H. Site-Specific DNA-Doxorubicin Conjugates Display Enhanced Cytotoxicity to Breast Cancer Cells. Bioconjugate Chemistry, 2014, 25(2), 406-413. doi: 10.1021/bc4005427
  32. Myung, J.-K.; Banuelos, C.A.; Fernandez, J.G.; Mawji, N.R.; Wang, J.; Tien, A.H.; Yang, Y.C.; Tavakoli, I.; Haile, S.; Watt, K.; McEwan, I.J.; Plymate, S.; Andersen, R.J.; Sadar, M.D. An androgen receptor N-terminal domain antagonist for treating prostate cancer. Journal of Clinical Investigation, 2013, 123(7), 2948–2960. doi: 10.1172/jci66398
  33. Astakhova, I.K.; Hansen, L.H.; Vester, B.; Wengel, J. Peptide-LNA oligonucleotide conjugates. Organic & Biomolecular Chemistry, 2013, 11(25), 4240-4240. doi: 10.1039/c3ob40786a
  34. Lu, X.; Song, C.-X.; Szulwach, K.; Wang, Z.; Weidenbacher, P.; Jin, P.; He, C. Chemical Modification-Assisted Bisulfite Sequencing (CAB-Seq) for 5-Carboxylcytosine Detection in DNA. Journal of the American Chemical Society, 2013, 135(25), 9315-9317. doi: 10.1021/ja4044856
  35. Kovacic, S.; Samii, L.; Woolfson, D.N.; Curmi, P.M.G.; Linke, H.; Forde, N.R.; Blab, G.A. Design and Construction of a One-Dimensional DNA Track for an Artificial Molecular Motor. Journal of Nanomaterials, 2012, 2012, ID-ID 109238. doi: 10.1155/2012/109238
  36. Meimetis, L.G.; Williams, D.E.; Mawji, N.R.; Banuelos, C.A.; Lal, A.A.; Park, J.J.; Tien, A.H.; Fernandez, J.G.; de Voogd, N.J.; Sadar, M.D. et al. Niphatenones, Glycerol Ethers from the Sponge Niphates digitalis Block Androgen Receptor Transcriptional Activity in Prostate Cancer Cells: Structure Elucidation, Synthesis, and Biological Activity . Journal of Medicinal Chemistry, 2012, 55(1), 503-514. doi: 10.1021/jm2014056

Coumarin 343 X NHS ester

  1. Zheng, L.; Zhao, H.; Han, Y.; Qian, H.; Vukovic, L.; Mecinović, J.; Král, P.; Huck, W.T.S. Catalytic transport of molecular cargo using diffusive binding along a polymer track. Nature Chemistry, 2019, 11(4), 359–366. doi: 10.1038/s41557-018-0204-7

Coumarin 343 azide

  1. Musiol-Kroll, E.M.; Zubeil, F.; Schafhauser, T.; Härtner, T.; Kulik, A.; McArthur, J.B.; Koryakina, I.; Wohlleben, W.; Grond, S.; Williams, G.J.; Lee, S.Y.; Weber, T. Polyketide bio-derivatization using the promiscuous acyltransferase KirCII. ACS Synthetic Biology, 2017, 6(3), 421–427. doi: 10.1021/acssynbio.6b00341
  2. Teske, N.S.; Voigt, J.; Shastri, V.P. Clickable Degradable Aliphatic Polyesters via Copolymerization with Alkyne Epoxy Esters: Synthesis and Postfunctionalization with Organic Dyes. Journal of the American Chemical Society, 2014, 136(29), 10527-10533. doi: 10.1021/ja505629w

Cyanine2 NHS ester minimal dye

  1. Tamošiūnė, I.; Gelvonauskienė, D.; Haimi, P.; Mildažienė, V.; Koga, K.; Shiratani, M.; Baniulis, D. Cold Plasma Treatment of Sunflower Seeds Modulates Plant-Associated Microbiome and Stimulates Root and Lateral Organ Growth. Frontiers in Plant Science, 2020, 11, 568924. doi: 10.3389/fpls.2020.568924
  2. Valadares, R.B.S.; Perotto, S.; Lucheta, A.R.; Santos, E.C.; Oliveira, R.M.; Lambais, M.R. Proteomic and Transcriptomic Analyses Indicate Metabolic Changes and Reduced Defense Responses in Mycorrhizal Roots of Oeceoclades maculata (Orchidaceae) Collected in Nature. Journal of Fungi, 2020, 6(3), 148. doi: 10.3390/jof6030148
  3. Radman, S.; Raić, S.; Bućan, I.; Pribisalić, A.; Dunatov, J.; Mudnić, I.; Boban, M.; Pellay, F.X.; Kolčić, I.; Polašek, O. Searching for carbonylome biomarkers of aging – development and validation of the proteomic method for quantification of carbonylated protein in human plasma. Croatian Medical Journal, 2020, 61(2), 119–125. doi: 10.3325/cmj.2020.61.119
  4. Baniulis, D.; Sirgėdienė, M.; Haimi, P.; Tamošiūnė, I.; Danusevičius, D. Constitutive and Cold Acclimation-Regulated Protein Expression Profiles of Scots Pine Seedlings Reveal Potential for Adaptive Capacity of Geographically Distant Populations. Forests, 2020, 11(1), 89. doi: 10.3390/f11010089
  5. Kirectepe Aydin, A.; Özgüler, Y.; Uçar, D.; Kasap, M.; Akpınar, G.; Seyahi, E.; Tahir Turanli, E. Peripheral blood mononuclear cell proteome profile in Behçet's syndrome. Rheumatology International, 2020, 40(1), 65–74. doi: 10.1007/s00296-019-04417-2
  6. Dietl, A.; Winkel, I.; Pietrzyk, G.; Paulus, M.; Bruckmann, A.; Schröder, J.A.; Sossalla, S.; Luchner, A.; Maier, L.S.; Birner, C. Skeletal muscle alterations in tachycardia-induced heart failure are linked to deficient natriuretic peptide signalling and are attenuated by RAS-/NEP-inhibition. PloS One, 2019, 14, e0225937. doi: 10.1371/journal.pone.0225937
  7. Sergeant, K.; Printz, B.; Guerriero, G.; Renaut, J.; Lutts, S.; Hausman, J.-F. The Dynamics of the Cell Wall Proteome of Developing Alfalfa Stems. Biology, 2019, 8(3), 60. doi: 10.3390/biology8030060
  8. Skubalova, Z.; Michalkova, H.; Michalek, P.; Strmiska, V.; Guran, R.; Rodrigo, M.A.M.; Castkova, K.; Hynek, D.; Pekarik, V.; Zitka, O.; Adam, V.; Heger, Z. Prevalent Anatase Crystalline Phase Increases the Cytotoxicity of Biphasic Titanium Dioxide Nanoparticles in Mammalian Cells. Colloids and Surfaces, B: Biointerfaces, 2019, 182, 110391. doi: 10.1016/j.colsurfb.2019.110391
  9. Mildažienė, Vida and Aleknavičiūtė, V.; Žūkienė, R.; Paužaitė, G.; Naučienė, Z.; Filatova, I.; Lyushkevich, V.; Haimi, P.; Tamošiūnė, I.; Baniulis, D. Treatment of Common Sunflower (Helianthus annus L.) Seeds with Radio-frequency Electromagnetic Field and Cold Plasma Induces Changes in Seed Phytohormone Balance, Seedling Development and Leaf Protein Expression. Scientific Reports, 2019, 9, 6437. doi: 10.1038/s41598-019-42893-5
  10. Simon, Á.; Gulyás, G.; Mészár, Z.; Bhide, M.; Oláh, J.; Bai, P.; Csősz, É.; Jávor, A.; Komlósi, I.; Remenyik, J.; Czeglédi, L. Proteomics alterations in chicken jejunum caused by 24 h fasting. PeerJ, 2019, 7, e6588. doi: 10.7717/peerj.6588
  11. Laberge, A.; Ayoub, A.; Arif, S.; Larochelle, S.; Garnier, A.; Moulin, V.J. α-2-Macroglobulin induces the shedding of microvesicles from cutaneous wound myofibroblasts. Journal of Cellular Physiology, 2019, 234(7), 11369–11379. doi: 10.1002/jcp.27794
  12. Tesarova, B.; Charousova, M.; Dostalova, S.; Bienko, A.; Kopel, P.; Kruszyński, R.; Hynek, D.; Michalek, P.; Eckschlager, T.; Stiborova, M.; Adam, V.; Heger, Z. Folic acid-mediated re-shuttling of ferritin receptor specificity towards a selective delivery of highly cytotoxic nickel(II) coordination compounds. International Journal of Biological Macromolecules, 2019, 126, 1099–1111. doi: 10.1016/j.ijbiomac.2018.12.128
  13. Arevalo-Martin, A.; Grassner, L.; Garcia-Ovejero, D.; Paniagua-Torija, B.; Barroso-Garcia, G.; Arandilla, A.G.; Mach, O.; Turrero, A.; Vargas, E.; Alcobendas, M.; Rosell, C.; Alcaraz, M.A.; Ceruelo, S.; Casado, R.;Talavera, F.; Palazón, R.; Sanchez-Blanco, N.; Maier, D.; Esclarin, A.; Molina-Holgado, E. Elevated Autoantibodies in Subacute Human Spinal Cord Injury Are Naturally Occurring Antibodies. Frontiers in Immunology, 2018, 9, 2365. doi: 10.3389/fimmu.2018.02365
  14. Lu, J.; Tang, M.; Liu, Y.; Wang, J.; Wu, Z. Comparative Proteomics of Chromium-Transformed Beas-2B Cells by 2D-DIGE and MALDI-TOF/TOF MS. Biological Trace Element Research, 2018, 185(1), 78–88. doi: 10.1007/s12011-017-1222-9
  15. Tamošiūnė, I.; Stanienė, G.; Haimi, P.; Stanys, V.; Rugienius, R.; Baniulis, D. Endophytic Bacillus and Pseudomonas spp. Modulate Apple Shoot Growth, Cellular Redox Balance, and Protein Expression Under in Vitro Conditions. Frontiers in Plant Science, 2018, 9, 889. doi: 10.3389/fpls.2018.00889
  16. Tsikandelova, R.; Mladenov, P.; Planchon, S.; Kalenderova, S.; Praskova, M.; Mihaylova, Z.; Stanimirov, P.; Mitev, V.; Renaut, J.; Ishkitiev, N. Proteome response of dental pulp cells to exogenous FGF8. Journal of Proteomics, 2018, 183, 14–24. doi: 10.1016/j.jprot.2018.05.004
  17. Jun, D.; Minic, Z.; Bhat, S.V.; Vanderlinde, E.M.; Yost, C.K.; Babu, M.; Dahms, T.E.S. Metabolic Adaptation of a C-Terminal Protease A-Deficient Rhizobium leguminosarum in Response to Loss of Nutrient Transport. Frontiers in Microbiology, 2018, 8, 2617. doi: 10.3389/fmicb.2017.02617
  18. Shields, K.J.; Wu, C. Differential Adipose Tissue Proteomics. Methods in Molecular Biology, 2017, 1788, 243–250. doi: 10.1007/7651_2017_80
  19. Zhao, P.; George, J.V.; Li, B.; Amini, N.; Paluh, J.; Wang, J. Clickable Multifunctional Dumbbell Particles for In Situ Multiplex Single-Cell Cytokine Detection. ACS Applied Materials & Interfaces, 2017, 9(38), 32482–32488. doi: 10.1021/acsami.7b08338
  20. Merjaneh, M.; Langlois, A.; Larochelle, S.; Cloutier, C.B.; Ricard-Blum, S.; Moulin, V.J. Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts. Angiogenesis, 2017, 20(3), 385–398. doi: 10.1007/s10456-017-9554-9
  21. Sikorskaite-Gudziuniene, S.; Haimi, P.; Gelvonauskiene, D.; Stanys, V. Nuclear proteome analysis of apple cultivar ‘Antonovka’ accessions in response to apple scab (Venturia inaequalis). European Journal of Plant Pathology, 2017, 148(4), 771–784. doi: 10.1007/s10658-016-1131-3
  22. Bian, Y.; Deng, X.; Yan, X.; Zhou, J.; Yuan, L.; Yan, Y. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Scientific Reports, 2017, 7, 46183. doi: 10.1038/srep46183
  23. Nemethova, M.; Talian, I.; Danielisova, V.; Tkacikova, S.; Bonova, P.; Bober, P.; Matiasova, M.; Sabo, J.; Burda, J. Delayed bradykinin postconditioning modulates intrinsic neuroprotective enzyme expression in the rat CA1 region after cerebral ischemia: a proteomic study. Metabolic Brain Disease, 2016, 31(6), 1391–1403. doi: 10.1007/s11011-016-9859-1
  24. Lu, J.; Zhou, Z.; Zheng, J.; Zhang, Z.; Lu, R.; Liu, H.; Shi, H.; Tu, Z. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation. Toxicology and Applied Pharmacology, 2015, 288(1), 106–113. doi: 10.1016/j.taap.2015.07.020
  25. Printz, B.; Guerriero, G.; Sergeant, K.; Renaut, J.; Lutts, S.; Hausman, J.-F. Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem. Plant Science, 2015, 238, 13–25. doi: 10.1016/j.plantsci.2015.05.014
  26. Ashoub, A.; Baeumlisberger, M.;Neupaertl, M.; Karas, M.; Brüggemann, W. Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Molecular Biology, 2015, 87(4–5), 459–471. doi: 10.1007/s11103-015-0291-4
  27. Feret, R.; Lilley, K.S. Protein Profiling Using Two-Dimensional Difference Gel Electrophoresis (2-D DIGE). Current Protocols in Protein Science, 2014, 22.2.1-22.2.17. doi: 10.1002/0471140864.ps2202s75

Cyanine3 DBCO

  1. Islam, M.R.; Nguy, C.; Pandit, S.; Lyon, L.A. Design and Synthesis of Core–Shell Microgels with One‐Step Clickable Crosslinked Cores and Ultralow Crosslinked Shells. Macromolecular Chemistry and Physics, 2020, 221(19), 2000156. doi: 10.1002/macp.202000156
  2. Jiang, Z.; He, H.; Liu, H.; Thayumanavan, S. Cellular Uptake Evaluation of Amphiphilic Polymer Assemblies: Importance of Interplay between Pharmacological and Genetic Approaches. Biomacromolecules, 2019, 20(12), 4407–4418. doi: 10.1021/acs.biomac.9b01073

Cyanine3 NHS ester

  1. Chiou, A.E.; Hinckley, J.A.; Khaitan, R:; Varsano, N.; Wang, J.; Malarkey, H.F.; Hernandez, C.J.; Williams, R.M.; Estroff, L.A.; Weiner, S.; Addadi, L.; Wiesner, U.B.; Fischbach, C. Fluorescent Silica Nanoparticles to Label Metastatic Tumor Cells in Mineralized Bone Microenvironments. Small, in press. doi: 10.1002/smll.202001432
  2. Li, H.-Y.; Lin, H.-C.; Huang, B.-J.; Lo, A.Z.K.; Saidin, S.; Lai, C.-H. Size Preferences Uptake of Glyco-Silica Nanoparticles to MDA-MB-231 Cell. Langmuir, 2020, 36(38), 11374–11382. doi: 10.1021/acs.langmuir.0c02297
  3. Perkins, L.A.; Nyiranshuti, L.; Little-Ihrig, L.; Latoche, J.D.; Day, K.E.; Zhu, Q.; Tavakoli, S.; Sundd, P.; Novelli, E.M.; Anderson, C.J. Integrin VLA-4 as a PET imaging biomarker of hyper-adhesion in transgenic sickle mice. Blood Advances, 2020, 4(17), 4102–4112. doi: 10.1182/bloodadvances.2020002642
  4. Haddad, Y.; Charousova, M.; Zivotska, H.; Splichal, Z.; Merlos Rodrigo, M.A.; Michalkova, H.; Krizkova, S.; Tesarova, B.; Richtera, L.; Vitek, P.; Stokowa-Soltys, K.; Hynek, D.; Milosavljevic, V.; Rex, S.; Heger, Z. Norepinephrine transporter-derived homing peptides enable rapid endocytosis of drug delivery nanovehicles into neuroblastoma cells. Journal of Nanobiotechnology, 2020, 18, 95. doi: 10.1186/s12951-020-00654-x
  5. Chen, K.; Yang, R.; Li, Y.; Zhou, J.C.; Zhang, M. Giant ankyrin-B suppresses stochastic collateral axon branching through direct interaction with microtubules. Journal of Cell Biology, 2020, 219(8), e201910053. doi: 10.1083/jcb.201910053
  6. Aronsson, C.; Jury, M.; Naeimipour, S.; Rasti Boroojeni, F.; Christoffersson, J.; Lifwergren, P.; Mandenius, C.-F.; Selegård, R.; Aili, D. Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting. Biofabrication, 2020, 12(3), 035031. doi: 10.1088/1758-5090/ab9490
  7. Priwitaningrum, D.L.; Jentsch, J.; Bansal, R.; Rahimian, S.; Storm, G.; Hennink, W.E.; Prakash, J. Apoptosis-inducing Peptide Loaded in PLGA Nanoparticles Induces Anti-tumor Effects in vivo. International Journal of Pharmaceutics, 2020, 585, 119535. doi: 10.1016/j.ijpharm.2020.119535
  8. Deng, L.; Huang, X.; Ren, J. In Situ Study of the Drug-target Protein Interaction in Single Living Cells by Combining Fluorescence Correlation Spectroscopy with Affinity Probes. Analytical Chemistry, 2020, 92(10), 7020–7027. doi: 10.1021/acs.analchem.0c00263
  9. Korzhikov-Vlakh, V.; Katernuk, I.; Pilipenko, I.; Lavrentieva, A.; Guryanov, I.; Sharoyko, V.; Manshina, A.A.; Tennikova, T.B. Photosensitive Poly-L-lysine/Heparin Interpolyelectrolyte Complexes for Delivery of Genetic Drugs. Polymers, 2020, 12(5), 1077. doi: 10.3390/polym12051077
  10. Ryu, J.S.; Im, S.H.; Kang, Y.K.; Kim, Y.S.; Chung, H.J. Ultra-fast and universal detection of Gram-negative bacteria in complex samples based on colistin derivatives. Biomaterials Science, 2020, 8(8), 2111–2119. doi: 10.1039/c9bm01926j
  11. Basu, U.; Lee, S.-W.; Deshpande, A.; Shen, J.; Sohn, B.-K.; Cho, H.; Kim, H.; Patel, S.S. The C-terminal tail of the yeast mitochondrial transcription factor Mtf1 coordinates template strand alignment, DNA scrunching and timely transition into elongation. Nucleic Acids Research, 2020, 48(5), 2604–2620. doi: 10.1093/nar/gkaa040
  12. Hofmann, F.J.; Bodnarchuk, M.; Dirin, D.N.; Vogelsang, J.; Kovalenko, M.V.; Lupton, J.M. Energy transfer from perovskite nanocrystals to dye molecules does not occur by FRET. Nano Letters, 2019, 19(12), 8896–8902. doi: 10.1021/acs.nanolett.9b03779
  13. Rho, J.Y.; Cox, H.; Mansfield, E.D.H.; Ellacott, S.H.; Peltier, R.; Brendel, J.C.; Hartlieb, M.; Waigh, T.A.; Perrier, S. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nature Communications, 2019, 10, 4708. doi: 10.1038/s41467-019-12586-8
  14. Li, L.; Wang, J.; Li, Y.; Radford, D.C.; Yang, J.; Kopeček, J. Broadening and Enhancing Functions of Antibodies by Self-Assembling Multimerization at Cell Surface. ACS Nano, 2019, 13(10), 11422–11432. doi: 10.1021/acsnano.9b04868
  15. Antonov, S.A.; Novosadova, E.V.; Kobylansky, A.G.; Tarantul, V.Z.; Grivennikov, I.A. A Hybrid Detection Method Based on Peroxidase-mediated Signal Amplification and Click Chemistry for Highly Sensitive Background-free Immunofluorescent Staining. Journal of Histochemistry & Cytochemistry, 2019, 67(10), 771–782. doi: 10.1369/0022155419864113
  16. Lee, S.A.; Biteen, J.S. Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 5764–5769. doi: 10.1021/acs.jpclett.9b02480
  17. Kim, H.J.; Yen, L.; Wongpalee, S.P.; Kirshner, J.A.; Mehta, N.; Xue, Y.; Johnston, J.B.; Burlingame, A.L.; Kim, J.K.; Loparo, J.J.; Jacobsen, S.E. The Gene-Silencing Protein MORC-1 Topologically Entraps DNA and Forms Multimeric Assemblies to Cause DNA Compaction. Molecular Cell, 2019, 75, 700–710. doi: 10.1016/j.molcel.2019.07.032
  18. Malfanti, A.; Scomparin, A.; Pozzi, S.; Gibori, H.; Krivitsky, A.; Satchi-Fainaro, R.; Mastrotto, F.; Caliceti, P.; Salmaso, S. Oligo-guanidyl targeted bioconjugates forming rod shaped polyplexes as a new nanoplatform for oligonucleotide delivery. Journal of Controlled Release, 2019, 310, 58–73. doi: 10.1016/j.jconrel.2019.08.005
  19. Brady, S.; Singh, G.; Bolinger, C.; Song, Z.; Boeras, I.; Weng, K.; Trent, B.; Brown, W.C.; Singh, K.; Boris-Lawrie, K.; Heng, X. Virion-associated, host-derived DHX9/RNA helicase A enhances the processivity of HIV-1 reverse transcriptase on genomic RNA. Journal of Biological Chemistry, 2019, 294(30), 11473–11485. doi: 10.1074/jbc.RA119.007679
  20. Jensen, D.; Manzano, A.R.; Rammohan, J.; Stallings, C.L.; Galburt, E.A. CarD and RbpA modify the kinetics of initial transcription and slow promoter escape of the Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Research, 2019, 47(13), 6685–6698. doi: 10.1093/nar/gkz449
  21. Andersen, V.L.; Vinther, M.; Kumar, R.; Ries, A.; Wengel, J.; Nielsen, J.S.; Kjems, J. A self-assembled, modular nucleic acid-based nanoscaffold for multivalent theranostic medicine. Theranostics, 2019, 9(9), 2662–2677. doi: 10.7150/thno.32060
  22. Ding, Y.; Liu, J.; Li, X.; Xu, L.; Li, C.; Ma, L.; Liu, J.; Ma, R.; An, Y.; Huang, F.; Liu, Y.; Shi, L. Rational design of drug delivery systems for potential programmable drug release and improved therapeutic effect. Materials Chemistry Frontiers, 2019, 3(6), 1159–1167. doi: 10.1039/c9qm00178f
  23. Kholmicheva, N.; Budkina, D.S.; Cassidy, J.; Porotnikov, D.; Harankahage, D.; Boddy, A.; Galindo, M.; Khon, D.; Tarnovsky, A.N.; Zamkov, M. Sustained Biexciton Populations in Nanoshell Quantum Dots. ACS Photonics, 2019, 6(4), 1041–1050. doi: 10.1021/acsphotonics.9b00068
  24. Hortelao, A.C.; Carrascosa, R.; Murillo-Cremaes, N.; Patiño, T.; Sanchez, S. Targeting 3D Bladder Cancer Spheroids with Urease-Powered Nanomotors. ACS Nano, 2019, 13(1), 429–439. doi: 10.1021/acsnano.8b06610
  25. Li, L.; Yang, J.; Soodvilai, S.; Wang, J.; Opanasopit, P.; Kopeček, J. Drug-free albumin-triggered sensitization of cancer cells to anticancer drugs. Journal of Controlled Release, 2019, 293, 84–93. doi: 10.1016/j.jconrel.2018.11.015
  26. Ye, K.; Sinawang, P.D.; Yoong, A.T.I.; Marks, R.S. Photoinducible silane diazirine as an effective crosslinker in the construction of a chemiluminescent immunosensor targeting a model E. coli analyte. Sensors and Actuators B: Chemical, 2018, 256, 234–242. doi: 10.1016/j.snb.2017.10.058
  27. Smith, W.J.; Wang, G.; Gaikwad, H.; Vu, V.P.; Groman, E.; Bourne, D.W.A.; Simberg, D. Accelerated Blood Clearance of Antibodies by Nanosized Click Antidotes. ACS Nano, 2018, 12(12), 12523–12532. doi: 10.1021/acsnano.8b07003
  28. Korzhikov-Vlakh, V.; Averianov, I.; Sinitsyna, E.; Nashchekina, Y.; Polyakov, D.; Guryanov, I.; Lavrentieva, A.; Raddatz, L.; Korzhikova-Vlakh, E.; Scheper, T.; Tennikova, T. Novel Pathway for Efficient Covalent Modification of Polyester Materials of Different Design to Prepare Biomimetic Surfaces. Polymers, 2018, 10(12), 1299. doi: 10.3390/polym10121299
  29. Zhang, L.; Fang, Y.; Li, L.; Yang, J.; Radford, D.C.; Kopeček, J. Human Serum Albumin-Based Drug-Free Macromolecular Therapeutics: Apoptosis Induction by Coiled-Coil-Mediated Cross-Linking of CD20 Antigens on Lymphoma B Cell Surface. Macromolecular Bioscience, 2018, 18(11), e1800224. doi: 10.1002/mabi.201800224
  30. Swaminathan, J.; Boulgakov, A.A.; Hernandez, E.T.; Bardo, A.M.; Bachman, J.L.; Marotta, J.; Johnson, A.M.; Anslyn, E.V.; Marcotte, E.M. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nature Biotechnology, 2018, 36(11), 1076–1082. doi: 10.1038/nbt.4278
  31. Smith, J.D.; Cardwell, L.N.; Porciani, D.; Nguyen, J.A.; Gallazzi, F.; Tata, R.R.; Burke, D.H.; Daniels, M.A.; Ulery, B. Aptamer-displaying peptide amphiphile micelles as a cell-targeted delivery vehicle of peptide cargoes. Physical Biology, 2018, 15(6), 065006. doi: 10.1088/1478-3975/aadb68
  32. Wu, B.; Zhang, H.; Sun, R.; Peng, S.; Cooperman, B.S.; Goldman, Y.E.; Chen, C. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. Nucleic Acids Research, 2018, 46(18), 9736–9748. doi: 10.1093/nar/gky636
  33. Delcanale, P.; Miret-Ontiveros, B.; Arista-Romero, M.; Pujals, S.; Albertazzi, L. Nanoscale Mapping Functional Sites on Nanoparticles by Points Accumulation for Imaging in Nanoscale Topography (PAINT). ACS Nano, 2018, 12(8), 7629–7637. doi: 10.1021/acsnano.7b09063
  34. Tridgett, M.; Moore-Kelly, C.; Duprey, J.-L.H.A.; Iturbe, L.O.; Tsang, C.W.; Little, H.A.; Sandhu, S.K.; Hicks, M.R.; Dafforn, T.R.; Rodger, A. Linear dichroism of visible-region chromophores using M13 bacteriophage as an alignment scaffold. RSC Advances, 2018, 8(52), 29535–29543. doi: 10.1039/c8ra05475d
  35. Shvadchak, V.; Zgheib, S.; Basta, B.; Humbert, N.; Langedijk, J.; Morris, M.C.; Ciaco, S.; Maskri, O.; Darlix, J.-L.; Mauffret, O.; Fossé, P.; Réal, E.; Mély, Y. Rationally Designed Peptides as Efficient Inhibitors of Nucleic Acid Chaperone Activity of HIV-1 Nucleocapsid Protein. Biochemistry, 2018, 57(30), 4562–4573. doi: 10.1021/acs.biochem.8b00527
  36. Salinas, C.B.G.; Lu, T.T.-H.; Gabery, S.; Marstal, K.; Alanentalo, T.; Mercer, A.J.; Cornea, A.; Conradsen, K.; Hecksher-Sørensen, J.; Dahl, A.B.; Knudsen, L.B.; Secher, A. Integrated Brain Atlas for Unbiased Mapping of Nervous System Effects Following Liraglutide Treatment. Scientific Reports, 2018, 8, 10310. doi: 10.1038/s41598-018-28496-6
  37. Rho, J.Y.; Brendel, J.C.; MacFarlane, L.R.; Mansfield, E.D.H.; Peltier, R.; Rogers, S.; Hartlieb, M.; Perrier, S. Probing the Dynamic Nature of Self-Assembling Cyclic Peptide–Polymer Nanotubes in Solution and in Mammalian Cells. Advanced Functional Materials, 2018, 28(24), 1704569. doi: 10.1002/adfm.201704569
  38. Tahara, H.; Takabe, K.; Sasaki, Y.; Kasuga, K.; Kawamoto, A.; Koizumi, N.; Nakamura, S. The mechanism of two-phase motility in the spirochete Leptospira: Swimming and crawling. Science Advances, 2018, 4(5), eaar7975. doi: 10.1126/sciadv.aar7975
  39. Larsen, K.P.; Mathiharan, Y.K.; Kappel, K.; Coey, A.T.; Chen, D.-H.; Barrero, D.; Madigan, L.; Puglisi, J.D.; Skiniotis, G.; Puglisi, E.V. Architecture of an HIV-1 reverse transcriptase initiation complex. Nature, 2018, 557, 118–122. doi: 10.1038/s41586-018-0055-9
  40. Poreba, M.; Rut, W.; Vizovisek, M.; Groborz, K.; Kasperkiewicz, P.; Finlay, D.; Vuori, K.; Turk, D.; Turk, B.; Salvesen, G.; Drag, M. Selective imaging of human cathepsin L in breast cancer by fluorescent activity-based probes. Chemical Science, 2018, 9(8), 2113–2129. doi: 10.1039/C7SC04303A
  41. He, H.; Markoutsa, E.; Li, J.; Xu, P. Repurposing Disulfiram for Cancer Therapy via Targeted Nanotechnology through Enhanced Tumor Mass Penetration and Disassembly. Acta Biomaterialia, 2018, 68, 113–124. doi: 10.1016/j.actbio.2017.12.023
  42. Li, L.; Yang, J.; Wang, J.; Kopeček, J. Drug-Free Macromolecular Therapeutics Induce Apoptosis via Calcium Influx and Mitochondrial Signaling Pathway. Macromolecular Bioscience, 2018, 1, 1700196. doi: 10.1002/mabi.201700196
  43. Locke, L.W.; Kothandaraman, S.; Tweedle, M.; Chaney, S.; Wozniak, D.; Schlesinger, L.S. Use of a leukocyte-targeted peptide probe as a potential tracer for imaging the tuberculosis granuloma. Tuberculosis, 2018, 108, 201–210. doi: 10.1016/j.tube.2018.01.001
  44. Sato, S.-I.; Yatsuzuka, K.; Katsuda, Y.; Uesugi, M. Method for Imaging Live-Cell RNA Using an RNA Aptamer and a Fluorescent Probe. Methods in Molecular Biology, 2018, 1649, 305–318. doi: 10.1007/978-1-4939-7213-5_20
  45. Kim, J.-w.; Heu, W.; Jeong, S.; Kim, H.-S. Genetically functionalized ferritin nanoparticles with a high-affinity protein binder for immunoassay and imaging. Analytica Chimica Acta, 2017, 988, 81–88. doi: 10.1016/j.aca.2017.07.060
  46. Zhang, C.; Yang, L.; Ding, Y.; Wang, Y.; Lan, L.; Ma, Q.; Chi, X.; Wei, P.; Zhao, Y.; Steinbüchel, A.; Zhang, H.; Liu, P. Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nature Communications, 2017, 8, 15979. doi: 10.1038/ncomms15979
  47. Sun, S.; Li, L.; Yang, F.; Wang, X.; Fan, F.; Yang, M.; Chen, C.; Li, X.; Wang, H.-W.; Sui, S.-F. Cryo-EM structures of the ATP-bound Vps4E233Q hexamer and its complex with Vta1 at near-atomic resolution. Nature Communications, 2017, 8, 16064. doi: 10.1038/ncomms16064
  48. Rosier, B.J.H.M.; Cremers, G.A.O.; Engelen, W.; Merkx, M.; Brunsveld, L.; de Greef, T.F.A. Incorporation of native antibodies and Fc-fusion proteins on DNA nanostructures via a modular conjugation strategy. Chemical Communications, 2017, 53, 7393–7396. doi: 10.1039/c7cc04178k
  49. Maity, S.; Hashemi, M.; Lyubchenko, Y.L. Nano-assembly of amyloid β peptide: role of the hairpin fold. Scientific Reports, 2017, 7, 2344. doi: 10.1038/s41598-017-02454-0
  50. Tang, X.-L.; Yuan, C.-H.; Ding, Q.; Zhou, Y.; Pan, Q.; Zhang, X.-L. Selection and identification of specific glycoproteins and glycan biomarkers of macrophages involved in Mycobacterium tuberculosis infection. Tuberculosis, 2017, 104, 95–106. doi: 10.1016/j.tube.2017.03.010
  51. Taskova, M.; Uhd, J.; Miotke, L.; Kubit, M.; Bell, J.; Ji, H.P.; Astakhova, K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Analytical Chemistry, 2017, 89(8), 4363–4366. doi: 10.1021/acs.analchem.7b00646
  52. Chen, K.; Guo, L.; Zhang, J.; Chen, Q.; Wang, K.; Li, C.; Li, W.; Qiao, M.; Zhao, X.; Hu, H.; Chen, D. A gene delivery system containing nuclear localization signal: increased nucleus import and transfection efficiency with the assistance of RanGAP1. Acta Biomaterialia, 2017, 48, 215–226. doi: 10.1016/j.actbio.2016.11.004
  53. Shirure, V.S.; George, S.C. Design considerations to minimize the impact of drug absorption in polymer-based organ-on-a-chip platforms. Lab on a Chip, 2017, 17(4), 681–690. doi: 10.1039/c6lc01401a
  54. Lu, K.-Y.; Li, R.; Hsu, C.-H.; Lin, C.-W.; Chou, S.-C.; Tsai, M.-L.; Mi, F.-L. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydrate Polymers, 2017, 165, 410–420. doi: 10.1016/j.carbpol.2017.02.065
  55. Taneja, N.; Zofall, M.; Balachandran, V.; Thillainadesan, G.; Sugiyama, T.; Wheeler, D.; Zhou, M.; Grewal, S.I.S. SNF2 Family Protein Fft3 Suppresses Nucleosome Turnover to Promote Epigenetic Inheritance and Proper Replication. Molecular Cell, 2017, 66(1), 50–62. doi: 10.1016/j.molcel.2017.02.006
  56. Gilbert, T.; Alsop, R.J.; Babi, M.; Moran-Mirabal, J.; Rheinstadter, M.C.; Hoare, T. Nanostructure of Fully Injectable Hydrazone-Thiosuccinimide Interpenetrating Polymer Network Hydrogels Assessed by Small-Angle Neutron Scattering and dSTORM Single-Molecule Fluorescence Microscopy. ACS Applied Materials & Interfaces, 2017, 9(48), 42179–42191. doi: 10.1021/acsami.7b11637
  57. Lin, T.-H.; Lin, C.-H.; Liu, Y.-J.; Huang, C.Y.; Lin, Y.-C.; Wang, S.-K. Controlling Ligand Spacing on Surface: Polyproline-Based Fluorous Microarray as a Tool in Spatial Specificity Analysis and Inhibitor Development for Carbohydrate-Protein Interactions. ACS Applied Materials & Interfaces, 2017, 9(48), 41691–41699. doi: 10.1021/acsami.7b13200
  58. Ramirez, Lisa and Herschkowitz, Jason I. and Wang, Jun. Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells. Scientific Reports, 2016, 6, 32505. doi: 10.1038/srep32505
  59. Hong, W.; Lee, S.; Chang, H.J.; Lee, E.S.; Cho, Y. Multifunctional magnetic nanowires: A novel breakthrough for ultrasensitive detection and isolation of rare cancer cells from non-metastatic early breast cancer patients using small volumes of blood. Biomaterials, 2016, 106, 78–86. doi: 10.1016/j.biomaterials.2016.08.020
  60. Wang, C.; Tang, F.; Wang, X.; Li, L. Synthesis and application of biocompatible gold core-poly-(L-Lysine) shell nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 425–430. doi: 10.1016/j.colsurfa.2016.07.014
  61. Zhong, Q.; Merkel, O.M.; Reineke, J.J.; da Rocha, S.R.P. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on their Systemic and Lung Cellular Biodistribution. Molecular Pharmaceutics, 2016, 13(6), 1866–1878. doi: 10.1021/acs.molpharmaceut.6b00036
  62. Ray, J.; Shin, I.; Ilgu, M.; Bendickson, L.; Gupta, V.; Kraus, G.A.; Nilsen-Hamilton, M. IMAGEtags: Quantifying mRNA Transcription in Real Time with Multiaptamer Reporters. Methods in Enzymology, 2016, 572, 193–213. doi: 10.1016/bs.mie.2016.02.028
  63. Hartley, J.M.; Zhang, R.; Gudheti, M.; Yang, J.; Kopeček, J. Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM. Journal of Controlled Release, 2016, 231, 50–59. doi: 10.1016/j.jconrel.2016.02.005
  64. Leenders, J.; Baker, M.B.; Pijpers, I.; Lafleur, R.; Albertazzi, L.; Palmans, A.R.A.; Meijer, E.W. Supramolecular polymerisation in water; elucidating the role of hydrophobic and hydrogen-bond interactions. Soft Matter, 2016, 12, 2887–2893. doi: 10.1039/c5sm02843d
  65. Kijima, S.T.; Hirose, K.; Kong, S.-G.; Wada, M.; Uyeda, T.Q.P. Distinct Biochemical Properties of Arabidopsis thaliana Actin Isoforms. Plant and Cell Physiology, 2016, 57(1), 46–56. doi: 10.1093/pcp/pcv176
  66. Poongavanam, M.-V.; Kisley, L.; Kourentzi, K.; Landes, C.F.; Willson, C. Ensemble and Single-Molecule Biophysical Characterization of D17.4 DNA Aptamer-IgE Interactions. Biochimica et Biophysica Acta, 2016, 1864(1), 154–164. doi: 10.1016/j.bbapap.2015.08.008
  67. Koo, H.; Choi, M.; Kim, E.; Hahn, S.K.; Weissleder, R.; Yun, S.H. Bioorthogonal Click Chemistry-Based Synthetic Cell Glue. Small, 2015, 11(48), 6458–6466. doi: 10.1002/smll.201502972
  68. Albertazzi, L.; van der Veeken, N.; Baker, M.B.; Palmans, A.R.A.; Meijer, E.W. Supramolecular copolymers with stimuli-responsive sequence control. Chemical Communications, 2015, 51(90), 16166–16168. doi: 10.1039/c5cc06951c
  69. Yang, J.; Zhang, R.; Radford, D.C.; Kopeček, J. FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. Journal of Controlled Release, 2015, 218, 36–44. doi: 10.1016/j.jconrel.2015.09.045
  70. Søndergaard, S.; Aznauryan, M.; Haustrup, E.K.; Schiøtt, B.; Birkedal, V.; Corry, B. Dynamics of Fluorescent Dyes Attached to G-Quadruplex DNA and their Effect on FRET Experiments. ChemPhysChem, 2015, 16(12), 2562–2570. doi: 10.1002/cphc.201500271
  71. Li, X.-P.; Jing, W.; Sun, J.-J.; Liu, Z.-Y.; Zhang, J.-T.; Sun, W.; Zhu, W.; Fan, Y.-Z. A potential small-molecule synthetic antilymphangiogenic agent norcantharidin inhibits tumor growth and lymphangiogenesis of human colonic adenocarcinomas through blocking VEGF-A,-C,-D/VEGFR-2,-3 "multi-points priming" mechanisms in vitro and ... BMC Cancer, 2015, 15, 527. doi: 10.1186/s12885-015-1521-5
  72. Rammohan, J.; Ruiz Manzano, A.; Garner, A.L.; Stallings, C.L.; Galburt, E.A. CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism. Nucleic Acids Research, 2015, 43(6), 3272–3285. doi: 10.1093/nar/gkv078
  73. Baker, Matthew B. and Albertazzi, Lorenzo and Voets, Ilja K. and Leenders, Christianus M.A. and Palmans, Anja R.A. and Pavan, Giovanni M. and Meijer, E.W. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer. Nature Communications, 2015, 6, 6234. doi: 10.1038/ncomms7234
  74. Choi, E.B.; Choi, J.; Bae, S.R.; Kim, H.-O.; Jang, E.; Kang, B.; Kim, M.-H.; Kim, B.; Suh, J.-S.; Lee, K. et al. Colourimetric redox-polyaniline nanoindicator for in situ vesicular trafficking of intracellular transport. Nano Research, 2015, 8(4), 1169–1179. doi: 10.1007/s12274-014-0597-6
  75. Guenther, D.; Anderson, G.; Karmakar, S.; Anderson, B.A.; Didion, B.A.; Guo, W.; Verstegen, J.; Hrdlicka, P.J. Invader probes: Harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications. Chemical Science, 2015, 6, 5006–2015. doi: 10.1039/c5sc01238d
  76. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  77. Kim, J.; Yang, Y.; Song, S.S.; Na, J.-H.; Oh, K.J.; Jeong, C.; Yu, Y.G.; Shin, Y.-K. Beta-Amyloid Oligomers Activate Apoptotic BAK Pore for Cytochrome c Release. Biophysical Journal, 2014, 107(7), 1601-1608. doi: 10.1016/j.bpj.2014.07.074
  78. Petkau-Milroy, K.; Sonntag, M.; Colditz, A.; Brunsveld, L. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks. International Journal of Molecular Sciences, 2013, 14(10), 21189–21201. doi: 10.3390/ijms141021189
  79. Albertazzi, L.; Martinez-Veracoechea, F.J.; Leenders, C.M.A.; Voets, I.K.; Frenkel, D.; Meijer, E.W. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(30), 12203-12208. doi: 10.1073/pnas.1303109110
  80. Cao, Z.; Partyka, K.; McDonald, M.; Brouhard, E.; Hincapie, M.; Brand, R.E.; Hancock, W.S.; Haab, B.B. Modulation of Glycan Detection on Specific Glycoproteins by Lectin Multimerization. Analytical Chemistry, 2013, 85(3), 1689-1698. doi: 10.1021/ac302826a
  81. Haller, A.; Altman, R.B.; Souliere, M.F.; Blanchard, S.C.; Micura, R. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(11), 4188-4193. doi: 10.1073/pnas.1218062110
  82. Kaastrup, K.; Chan, L.; Sikes, H.D. Impact of Dissociation Constant on the Detection Sensitivity of Polymerization-Based Signal Amplification Reactions. Analytical Chemistry, 2013, 85(17), 8055-8060. doi: 10.1021/ac4018988
  83. Gatzogiannis, E.; Chen, Z.; Wei, L.; Wombacher, R.; Kao, Y.-T.; Yefremov, G.; Cornish, V.W.; Min, W. Mapping protein-specific micro-environments in live cells by fluorescence lifetime imaging of a hybrid genetic-chemical molecular rotor tag. Chemical Communications, 2012, 48(69), 8694-8694. doi: 10.1039/c2cc33133k
  84. Kaastrup, K.; Sikes, H.D. Polymerization-based signal amplification under ambient conditions with thirty-five second reaction times. Lab on a Chip, 2012, 12(20), 4055-4055. doi: 10.1039/c2lc40584a

Cyanine3 NHS ester minimal dye

  1. Tamošiūnė, I.; Gelvonauskienė, D.; Haimi, P.; Mildažienė, V.; Koga, K.; Shiratani, M.; Baniulis, D. Cold Plasma Treatment of Sunflower Seeds Modulates Plant-Associated Microbiome and Stimulates Root and Lateral Organ Growth. Frontiers in Plant Science, 2020, 11, 568924. doi: 10.3389/fpls.2020.568924
  2. Valadares, R.B.S.; Perotto, S.; Lucheta, A.R.; Santos, E.C.; Oliveira, R.M.; Lambais, M.R. Proteomic and Transcriptomic Analyses Indicate Metabolic Changes and Reduced Defense Responses in Mycorrhizal Roots of Oeceoclades maculata (Orchidaceae) Collected in Nature. Journal of Fungi, 2020, 6(3), 148. doi: 10.3390/jof6030148
  3. Radman, S.; Raić, S.; Bućan, I.; Pribisalić, A.; Dunatov, J.; Mudnić, I.; Boban, M.; Pellay, F.X.; Kolčić, I.; Polašek, O. Searching for carbonylome biomarkers of aging – development and validation of the proteomic method for quantification of carbonylated protein in human plasma. Croatian Medical Journal, 2020, 61(2), 119–125. doi: 10.3325/cmj.2020.61.119
  4. Mindubaev, A.Z.; Kuznetsova, S.V.; Evtyugin, V.G.; Daminova, A.G.; Grigoryeva, T.V.; Romanova, Y.D.; Romanova, V.A.; Babaev, V.M.; Buzyurova, D.N.; Babynin, E.V.; Badeeva, E.K.; Minzanova, S.T.; Mironova, L.G. Effect of White Phosphorus on the Survival, Cellular Morphology, and Proteome of Aspergillus niger. Applied Biochemistry and Microbiology, 2020, 56(2), 194–201. doi: 10.1134/S0003683820020118
  5. Romanova, Y.; Laikov, A.; Markelova, M.; Khadiullina, R.; Makseev, A.; Hasanova, M.; Rizvanov, A.; Khaiboullina, S.; Salafutdinov, I. Proteomic Analysis of Human Serum from Patients with Chronic Kidney Disease. Biomolecules, 2020, 10(2), 257. doi: 10.3390/biom10020257
  6. Baniulis, D.; Sirgėdienė, M.; Haimi, P.; Tamošiūnė, I.; Danusevičius, D. Constitutive and Cold Acclimation-Regulated Protein Expression Profiles of Scots Pine Seedlings Reveal Potential for Adaptive Capacity of Geographically Distant Populations. Forests, 2020, 11(1), 89. doi: 10.3390/f11010089
  7. Kirectepe Aydin, A.; Özgüler, Y.; Uçar, D.; Kasap, M.; Akpınar, G.; Seyahi, E.; Tahir Turanli, E. Peripheral blood mononuclear cell proteome profile in Behçet's syndrome. Rheumatology International, 2020, 40(1), 65–74. doi: 10.1007/s00296-019-04417-2
  8. Dietl, A.; Winkel, I.; Pietrzyk, G.; Paulus, M.; Bruckmann, A.; Schröder, J.A.; Sossalla, S.; Luchner, A.; Maier, L.S.; Birner, C. Skeletal muscle alterations in tachycardia-induced heart failure are linked to deficient natriuretic peptide signalling and are attenuated by RAS-/NEP-inhibition. PloS One, 2019, 14, e0225937. doi: 10.1371/journal.pone.0225937
  9. Sergeant, K.; Printz, B.; Guerriero, G.; Renaut, J.; Lutts, S.; Hausman, J.-F. The Dynamics of the Cell Wall Proteome of Developing Alfalfa Stems. Biology, 2019, 8(3), 60. doi: 10.3390/biology8030060
  10. Skubalova, Z.; Michalkova, H.; Michalek, P.; Strmiska, V.; Guran, R.; Rodrigo, M.A.M.; Castkova, K.; Hynek, D.; Pekarik, V.; Zitka, O.; Adam, V.; Heger, Z. Prevalent Anatase Crystalline Phase Increases the Cytotoxicity of Biphasic Titanium Dioxide Nanoparticles in Mammalian Cells. Colloids and Surfaces, B: Biointerfaces, 2019, 182, 110391. doi: 10.1016/j.colsurfb.2019.110391
  11. Mildažienė, Vida and Aleknavičiūtė, V.; Žūkienė, R.; Paužaitė, G.; Naučienė, Z.; Filatova, I.; Lyushkevich, V.; Haimi, P.; Tamošiūnė, I.; Baniulis, D. Treatment of Common Sunflower (Helianthus annus L.) Seeds with Radio-frequency Electromagnetic Field and Cold Plasma Induces Changes in Seed Phytohormone Balance, Seedling Development and Leaf Protein Expression. Scientific Reports, 2019, 9, 6437. doi: 10.1038/s41598-019-42893-5
  12. Simon, Á.; Gulyás, G.; Mészár, Z.; Bhide, M.; Oláh, J.; Bai, P.; Csősz, É.; Jávor, A.; Komlósi, I.; Remenyik, J.; Czeglédi, L. Proteomics alterations in chicken jejunum caused by 24 h fasting. PeerJ, 2019, 7, e6588. doi: 10.7717/peerj.6588
  13. Laberge, A.; Ayoub, A.; Arif, S.; Larochelle, S.; Garnier, A.; Moulin, V.J. α-2-Macroglobulin induces the shedding of microvesicles from cutaneous wound myofibroblasts. Journal of Cellular Physiology, 2019, 234(7), 11369–11379. doi: 10.1002/jcp.27794
  14. Malheiros, J.M.; Braga, C.P.; Grove, R.A.; Ribeiro, F.A.; Calkins, C.R.; Adamec, J.; Chardulo, L.A.L. Influence of oxidative damage to proteins on meat tenderness using a proteomics approach. Meat Science, 2019, 148, 64–71. doi: 10.1016/j.meatsci.2018.08.016
  15. Jin, Y.N.; Schlueter, P.J.; Jurisch-Yaksi, N.; Lam, P.-Y.; Jin, S.; Hwang, W.Y.; Yeh, J.-R.J.; Yoshigi, M.; Ong, S.-E.; Schenone, M.; Hartigan, C.R.; Carr, S.A.; Peterson, R.T. Noncanonical translation via deadenylated 3' UTRs maintains primordial germ cells. Nature Chemical Biology, 2018, 14(9), 844–852. doi: 10.1038/s41589-018-0098-0
  16. Lu, J.; Tang, M.; Liu, Y.; Wang, J.; Wu, Z. Comparative Proteomics of Chromium-Transformed Beas-2B Cells by 2D-DIGE and MALDI-TOF/TOF MS. Biological Trace Element Research, 2018, 185(1), 78–88. doi: 10.1007/s12011-017-1222-9
  17. Tamošiūnė, I.; Stanienė, G.; Haimi, P.; Stanys, V.; Rugienius, R.; Baniulis, D. Endophytic Bacillus and Pseudomonas spp. Modulate Apple Shoot Growth, Cellular Redox Balance, and Protein Expression Under in Vitro Conditions. Frontiers in Plant Science, 2018, 9, 889. doi: 10.3389/fpls.2018.00889
  18. Tsikandelova, R.; Mladenov, P.; Planchon, S.; Kalenderova, S.; Praskova, M.; Mihaylova, Z.; Stanimirov, P.; Mitev, V.; Renaut, J.; Ishkitiev, N. Proteome response of dental pulp cells to exogenous FGF8. Journal of Proteomics, 2018, 183, 14–24. doi: 10.1016/j.jprot.2018.05.004
  19. Jun, D.; Minic, Z.; Bhat, S.V.; Vanderlinde, E.M.; Yost, C.K.; Babu, M.; Dahms, T.E.S. Metabolic Adaptation of a C-Terminal Protease A-Deficient Rhizobium leguminosarum in Response to Loss of Nutrient Transport. Frontiers in Microbiology, 2018, 8, 2617. doi: 10.3389/fmicb.2017.02617
  20. Shields, K.J.; Wu, C. Differential Adipose Tissue Proteomics. Methods in Molecular Biology, 2017, 1788, 243–250. doi: 10.1007/7651_2017_80
  21. Zhao, P.; George, J.V.; Li, B.; Amini, N.; Paluh, J.; Wang, J. Clickable Multifunctional Dumbbell Particles for In Situ Multiplex Single-Cell Cytokine Detection. ACS Applied Materials & Interfaces, 2017, 9(38), 32482–32488. doi: 10.1021/acsami.7b08338
  22. Haimi, P.; Vinskiene, J.; Stepulaitiene, I.; Baniulis, D.; Stanienė, G.; Šikšnianienė, J.B.; Rugienius, R. Patterns of low temperature-Induced accumulation of dehydrins in Rosaceae crops — Evidence for post-translational modification in apple. Journal of Plant Physiology, 2017, 218, 175–181. doi: 10.1016/j.jplph.2017.08.008
  23. Merjaneh, M.; Langlois, A.; Larochelle, S.; Cloutier, C.B.; Ricard-Blum, S.; Moulin, V.J. Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts. Angiogenesis, 2017, 20(3), 385–398. doi: 10.1007/s10456-017-9554-9
  24. Sikorskaite-Gudziuniene, S.; Haimi, P.; Gelvonauskiene, D.; Stanys, V. Nuclear proteome analysis of apple cultivar ‘Antonovka’ accessions in response to apple scab (Venturia inaequalis). European Journal of Plant Pathology, 2017, 148(4), 771–784. doi: 10.1007/s10658-016-1131-3
  25. Heller, D.; Helmerhorst, E.J.; Oppenheim, F.G. Saliva and Serum Protein Exchange at the Tooth Enamel Surface. Journal of Dental Research, 2017, 96(4), 437–443. doi: 10.1177/0022034516680771
  26. Bian, Y.; Deng, X.; Yan, X.; Zhou, J.; Yuan, L.; Yan, Y. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Scientific Reports, 2017, 7, 46183. doi: 10.1038/srep46183
  27. Kaux JF, Libertiaux V, Leprince P, Fillet M, Denoel V Wyss C, Lecut C, Gothot A, Le Goff C, Croisier JL, Crielaard JM, Drion P. Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model. The American Journal of Sports Medicine, 2017, 45(6), 1440–1446. doi: 10.1177/0363546517689872
  28. Nemethova, M.; Talian, I.; Danielisova, V.; Tkacikova, S.; Bonova, P.; Bober, P.; Matiasova, M.; Sabo, J.; Burda, J. Delayed bradykinin postconditioning modulates intrinsic neuroprotective enzyme expression in the rat CA1 region after cerebral ischemia: a proteomic study. Metabolic Brain Disease, 2016, 31(6), 1391–1403. doi: 10.1007/s11011-016-9859-1
  29. Boone, C.; Grove, R.; Adamcova, D.; Braga, C.; Adamec, J. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics and bioinformatics. Proteomics, 2016, 16(13), 1889–1903. doi: 10.1002/pmic.201500546
  30. Bertrand, A.; Bipfubusa, M.; Castonguay, Y.; Rocher, S.; Szopinska-Morawska, A.; Papadopoulos, Y.; Renaut, J. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). BMC Plant Biology, 2016, 16, 65. doi: 10.1186/s12870-016-0751-2
  31. Bipfubusa, M.; Rocher, S.; Bertrand, A.; Castonguay, Y.; Renaut, J. Dataset of protein changes induced by cold acclimation in red clover (Trifolium pratense L.) populations recurrently selected for improved freezing tolerance. Data in Brief, 2016, 8, 570–574. doi: 10.1016/j.dib.2016.06.003
  32. Wang, Z.; Zourelias, L.; Wu, C.; Edwards, P.C.; Trombetta, M.; Passineau, M.J. Ultrasound-assisted nonviral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion. Gene Therapy, 2015, 22, 739–749. doi: 10.1038/gt.2015.36
  33. Lu, J.; Zhou, Z.; Zheng, J.; Zhang, Z.; Lu, R.; Liu, H.; Shi, H.; Tu, Z. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation. Toxicology and Applied Pharmacology, 2015, 288(1), 106–113. doi: 10.1016/j.taap.2015.07.020
  34. Printz, B.; Guerriero, G.; Sergeant, K.; Renaut, J.; Lutts, S.; Hausman, J.-F. Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem. Plant Science, 2015, 238, 13–25. doi: 10.1016/j.plantsci.2015.05.014
  35. Ashoub, A.; Baeumlisberger, M.;Neupaertl, M.; Karas, M.; Brüggemann, W. Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Molecular Biology, 2015, 87(4–5), 459–471. doi: 10.1007/s11103-015-0291-4
  36. Feret, R.; Lilley, K.S. Protein Profiling Using Two-Dimensional Difference Gel Electrophoresis (2-D DIGE). Current Protocols in Protein Science, 2014, 22.2.1-22.2.17. doi: 10.1002/0471140864.ps2202s75
  37. Molinari, C.E.; Casadio, Y.S.; Hartmann, B.T.; Livk, A.; Bringans, S.; Arthur, P.G.; Hartmann, P.E. Proteome Mapping of Human Skim Milk Proteins in Term and Preterm Milk. Journal of Proteome Research, 2012, 11(3), 1696-1714. doi: 10.1021/pr2008797

Cyanine3 alkyne

  1. Navarro, L.A.; French, D.L.; Zauscher, S. Synthesis of Modular Brush Polymer-Protein Hybrids using Diazotransfer and Copper Click Chemistry. Bioconjugate Chemistry, 2018, 29(8), 2594–2605. doi: 10.1021/acs.bioconjchem.8b00309
  2. Sacoman, J.L.; Dagda, R.Y.; Burnham-Marusich, A.R.; Dagda, R.K.; Berninsone, P.M. Mitochondrial O-GlcNAc transferase (mOGT) regulates mitochondrial structure, function and survival in HeLa cells. Journal of Biological Chemistry, 2017, 292(11), 4499–4518. doi: 10.1074/jbc.M116.726752
  3. Ponomarenko, A.I.; Brylev, V.A.; Sapozhnikova, K.A.; Ustinov, A.V.; Prokhorenko, I.A.; Zatsepin, T.S.; Korshun, V.A. Tetrahedral DNA conjugates from pentaerythritol-based polyazides. Tetrahedron, 2016, 72(19), 2386–2391. doi: 10.1016/j.tet.2016.03.051
  4. Gaitzsch, J.; Delahaye, M.; Poma, A.; Du Prez, F.; Battaglia, G. Comparison of metal free polymer-dye conjugation strategies in protic solvents. Polymer Chemistry, 2016, 7(17), 3046–3055;. doi: 10.1039/c6py00518g
  5. Vanparijs, N.; De Coen, R.; Laplace, D.R.; Louage, B.; Maji, S.; Lybaert, L.; Hoogenboom, R.; De Geest, B. Transiently responsive protein-polymer conjugates via a grafting-from RAFT approach: for intracellular co-delivery of proteins and immune-modulators. Chemical Communications, 2015, 51, 13972–13975. doi: 10.1039/c5cc04809e
  6. Huang, X.; He, J.; Hao, Y.; Ye, M.; Zhang, Q.; Ni, P.; Liu, J. Synthesis of PEGylated brush-type copolymers for a plurality of plug-and-play functions. RSC Advances, 2015, 5(62), 50019–50023. doi: 10.1039/c5ra06484h
  7. Burnham-Marusich, A.R.; Plechaty, A.M.; Berninsone, P.M. Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation. Electrophoresis, 2014, 35(18), 2621-2625. doi: 10.1002/elps.201400241
  8. Hatzenpichler, R.; Scheller, S.; Tavormina, P.L.; Babin, B.M.; Tirrell, D.A.; Orphan, V.J. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environmental Microbiology, 2014, 16(8), 2568-2590. doi: 10.1111/1462-2920.12436

Cyanine3 amine

  1. Wang, Y.; van Steenbergen, M.J.; Beztsinna, N.; Shi, Y.; Lammers, T.; van Nostrum, C.F.; Hennink, W.E. Biotin-decorated all-HPMA polymeric micelles for paclitaxel delivery. Journal of Controlled Release, in press. doi: 10.1016/j.jconrel.2020.09.013
  2. Zaw Thin, M.; Allan, H.; Bofinger, R.; Kostelec, T.D.; Guillaume, S.; Connell, J.J.; Patrick, P.S.; Hailes, H.C.; Tabor, A.B.; Lythgoe, M.F.; Stuckey, D.J.; Kalber, T.L. Multi-modal imaging probe for assessing the efficiency of stem cell delivery to orthotopic breast tumours. Nanoscale, 2020, 12(31), 16570–16585. doi: 10.1039/d0nr03237a
  3. Camardo, A.; Carney, S.; Ramamurthi, A. Assessing the targeting and fate of cathepsin k antibody-modified nanoparticles in a rat abdominal aortic aneurysm model. Acta Biomaterialia, 2020, 112, 225–233. doi: 10.1016/j.actbio.2020.05.037
  4. Yang, Y.; Long, Y.; Wang, Y.; Ren, K.; Li, M.; Zhang, Z.; Xiang, B.; He, Q. Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. International Journal of Pharmaceutics, 2020, 577, 119085. doi: 10.1016/j.ijpharm.2020.119085
  5. van Herck, S.; Deswarte, K.; Nuhn, L.; Zhong, Z.; Portela Catani, J.P.; Li, Y.; Sanders, N.N.; Lienenklaus, S.; De Koker, S.; Lambrecht, B.N.; David, S.A.; De Geest, B.G. Lymph-Node-Targeted Immune Activation by Engineered Block Copolymer Amphiphiles-TLR7/8 Agonist Conjugates. Journal of the American Chemical Society, 2018, 140, 14300–14307. doi: 10.1021/jacs.8b08595
  6. Lufton, M.; Bustan, O.; Eylon, B.-h.; Shtifman-Segal, E.; Croitoru-Sadger, T.; Shagan, A.; Shabtay-Orbach, A.; Corem-Salkmon, E.; Berman, J.; Nyska, A.; Mizrahi, B. Living Bacteria in Thermoresponsive Gel for Treating Fungal Infections. Advanced Functional Materials, 2018, 28(40), 1801581. doi: 10.1002/adfm.201801581
  7. Huang, D.; Chen, Y.-S.; Green, C.R.; Rupenthal, I.D. Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery in the treatment of retinal ischaemia. Biomaterials, 2018, 168, 10–23. doi: 10.1016/j.biomaterials.2018.03.034
  8. Murata, H.; Carmali, S.; Baker, S.L.; Matyjaszewski, K.; Russell, A.J. Solid-phase synthesis of protein-polymers on reversible immobilization supports. Nature Communications, 2018, 9, 845. doi: 10.1038/s41467-018-03153-8
  9. Huang, D.; Chen, Y.-S.; Xu, Q.; Hanes, J.; Rupenthal, I.D. Effects of enzymatic degradation on dynamic mechanical properties of the vitreous and intravitreal nanoparticle mobility. European Journal of Pharmaceutical Sciences, 2018, 118, 124–133. doi: 10.1016/j.ejps.2018.03.023
  10. Wollhofen, R.; Buchegger, B.; Eder, C.; Jacak, J.; Kreutzer, J.; Klar, T.A. Functional photoresists for sub-diffraction stimulated emission depletion lithography. Optical Materials Express, 2017, 7(7), 2538–2559. doi: 10.1364/ome.7.002538
  11. Wilson, D.R.; Mosenia, A.; Suprenant, M.P.; Upadhya, R.; Routkevitch, D.; Meyer, R.A.; Quinones-Hinojosa, A.; Green, J.J. Continuous Microfluidic Assembly of Biodegradable Poly(beta-amino ester)/DNA Nanoparticles for Enhanced Gene Delivery. Journal of Biomedical Materials Research. Part A, 2017, 105(6), 1813–1825. doi: 10.1002/jbm.a.36033
  12. Guldris, N.; Argibay, B.; Gallo, J.; Iglesias-Rey, R.; Carbó-Argibay, E.; Kolen'ko, Y.V.; Campos, F.; Sobrino, T.; Salonen, L.M.; Bañobre-López, M.; Castillo, J.; Rivas, J. Magnetite Nanoparticles for Stem Cell Labeling with High Efficiency and Long-Term in Vivo Tracking. Bioconjugate Chemistry, 2017, 28(2), 362–370. doi: 10.1021/acs.bioconjchem.6b00522
  13. Zhao, Y.; Houston, Z.H.; Simpson, J.D.; Chen, L.; Fletcher, N.L.; Fuchs, A.V.; Blakey, I.; Thurecht, K.J. Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics. Molecular Pharmaceutics, 2017, 14(10), 3539–3549. doi: 10.1021/acs.molpharmaceut.7b00560
  14. Guldris, N.; Argibay, B.; Kolen'ko, Y.V.; Carbó-Argibay, E.; Sobrino, T.; Campos, F.; Salonen, L.M.; Bañobre-López, M.; Castillo, J.; Rivas, J. Influence of the Separation Procedure on the Properties of Magnetic Nanoparticles: Gaining in vitro Stability and T1‐T2 Magnetic Resonance Imaging Performance. Journal of Colloid and Interface Science, 2016, 472, 229–236. doi: 10.1016/j.jcis.2016.03.040
  15. Gaitzsch, J.; Delahaye, M.; Poma, A.; Du Prez, F.; Battaglia, G. Comparison of metal free polymer-dye conjugation strategies in protic solvents. Polymer Chemistry, 2016, 7(17), 3046–3055;. doi: 10.1039/c6py00518g
  16. Demillo, V.G.; Zhu, X. Zwitterionic amphiphile coated magnetofluorescent nanoparticles – synthesis, characterization and tumor cell targeting. Journal of Materials Chemistry B, 2015, 3, 8328–8336. doi: 10.1039/C5TB01116G

Cyanine3 azide

  1. Tan, M.S.Y.; Davison, D.; Sanchez, M.I.; Anderson, B.M.; Howell, S.; Snijders, A.; Edgington-Mitchell, L.E.; Deu, E. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases. PLoS One, 2020, 15(1), e0227341. doi: 10.1371/journal.pone.0227341
  2. Saqr, A.; Vakili, M.R.; Huang, Y.-H.; Lai, R.; Lavasanifar, A. Development of Traceable Rituximab-Modified PEO-Polyester Micelles by Postinsertion of PEG-phospholipids for Targeting of B-cell Lymphoma. ACS Omega, 2019, 4(20), 18867–18879. doi: 10.1021/acsomega.9b02910
  3. Morimoto, K.; Cole, K.S.; Kourelis, J.; Witt, C.H.; Brown, D.; Krahn, D.; Stegmann, M.; Kaschani, F.; Kaiser, M.; Burton, J.; Mohammed, S.; Yamaguchi-Shinozaki, K.; Weerapana, E.; van der Hoorn, R.A.L. Triazine Probes Target Ascorbate Peroxidases in Plants. Plant Physiology, 2019, 180(4), 1848–1859. doi: 10.1104/pp.19.00481
  4. Antonov, S.A.; Novosadova, E.V.; Kobylansky, A.G.; Tarantul, V.Z.; Grivennikov, I.A. A Hybrid Detection Method Based on Peroxidase-mediated Signal Amplification and Click Chemistry for Highly Sensitive Background-free Immunofluorescent Staining. Journal of Histochemistry & Cytochemistry, 2019, 67(10), 771–782. doi: 10.1369/0022155419864113
  5. Olson, C.M.; Liang, Y.; Leggett, A.; Park, W.D.; Li, L.; Mills, C.E.; Elsarrag, S.Z.; Ficarro, S.B.; Zhang, T.; Düster, R.; Geyer, M.; Sim, T.; Marto, J.A.; Sorger, P.K.; Westover, K.D.; Lin, C.Y.; Kwiatkowski, N.; Gray, N.S. Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chemical Biology, 2019, 26(6), 792–803.e10. doi: 10.1016/j.chembiol.2019.02.012
  6. Kasprzyk, R.; Starek, B.J.; Ciechanowicz, S.; Kubacka, D.; Kowalska, J.; Jemielity, J. Fluorescent turn-on probes for the development of binding and hydrolytic activity assays for mRNA cap-recognising proteins. Chemistry, 2019, 25(27), 6728–6740. doi: 10.1002/chem.201900051
  7. Kumar, R.; Welle, A.; Becker, F.; Kopyeva, I.; Lahann, J. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films. Applied Materials & Interfaces, 2018, 10(38), 31965–31976. doi: 10.1021/acsami.8b11525
  8. Navarro, L.A.; French, D.L.; Zauscher, S. Synthesis of Modular Brush Polymer-Protein Hybrids using Diazotransfer and Copper Click Chemistry. Bioconjugate Chemistry, 2018, 29(8), 2594–2605. doi: 10.1021/acs.bioconjchem.8b00309
  9. Tsai, C.-Y.; Li, C.-W.; Li, J.-R.; Jang, B.-H.; Chen, S.-H. Steroid Probes Conjugated with Protein-Protected Gold Nanocluster: Specific and Rapid Fluorescence Imaging of Steroid Receptors in Target Cells. Journal of Fluorescence, 2016, 26(4), 1239–1248. doi: 10.1007/s10895-016-1811-6
  10. Park, H.; Koo, J.Y.; Srikanth, Y.V.V.; Oh, S.; Lee, J.; Park, J.; Park, S.B. Nonspecific protein labeling of photoaffinity linkers correlates with their molecular shapes in living cells. Chemical Communications, 2016, 52(34), 5828–5831. doi: 10.1039/c6cc01426g
  11. Zilio, C.;Bernardi, A.; Palmioli, A.; Salina, M.; Tagliabue, G.; Buscaglia, M.; Consonni, R.; Chiari, M. New "clickable" polymeric coating for glycan microarrays. Sensors and Actuators B: Chemical, 2015, 215, 412–420. doi: 10.1016/j.snb.2015.03.079
  12. Hong, T.N.; van der Hoorn, R.A.L. DIGE-ABPP by Click Chemistry: Pairwise Comparison of Serine Hydrolase Activities from the Apoplast of Infected Plants. Plant-Pathogen Interactions (Methods in Molecular Biology), 2014, 1127, 183-194. doi: 10.1007/978-1-62703-986-4_15
  13. Kupryushkin, M.S.; Nekrasov, M.D.; Stetsenko, D.A.; Pyshnyi, D.V. Efficient Functionalization of Oligonucleotides by New Achiral Nonnucleosidic Monomers. Organic Letters, 2014, 16(11), 2842-2845. doi: 10.1021/ol500668n
  14. Nienhaus, L.; Gross, D.E.; Xue, Z.; Moore, J.S.; Gruebele, M. Intramolecular energy transfer in a synthetic dendron-based light harvesting system. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 295, 26-33. doi: 10.1016/j.jphotochem.2014.08.014
  15. Palsuledesai, C.C.; Ochocki, J.D.; Markowski, T.W.; Distefano, M.D. A combination of metabolic labeling and 2D-DIGE analysis in response to a farnesyltransferase inhibitor facilitates the discovery of new prenylated proteins. Molecular BioSystems, 2014, 10(5), 1094-1103. doi: 10.1039/c3mb70593e
  16. Astakhova, I.K.; Wengel, J. Interfacing Click Chemistry with Automated Oligonucleotide Synthesis for the Preparation of Fluorescent DNA Probes Containing Internal Xanthene and Cyanine Dyes. Chemistry - a European Journal, 2013, 19(3), 1112-1122. doi: 10.1002/chem.201202621
  17. Paredes, E.; Das, S.R. Click Chemistry for Rapid Labeling and Ligation of RNA. ChemBioChem, 2010, 12(1), 125-131. doi: 10.1002/cbic.201000466

Cyanine3 carboxylic acid

  1. Nam, J.; Lim, H.-K.; Kim, N.H.; Park, J.K.; Kang, E.S.; Kim, Y.-T.; Heo, C.; Lee, O.-S.; Kim, S.-G.; Yun, W.S.; Suh, M.; Kim, Y.H. Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals through Three-Dimensional Electrical Network. ACS Nano, 2020, 14(1), 664–675. doi: 10.1021/acsnano.9b07396
  2. Deshmukh, R.; Biehs, S.-A.; Khwaja, E.; Galfsky, T.; Agarwal, G.S.; Menon, V.M. Long-range resonant energy transfer using optical topological transitions in metamaterials. ACS Photonics, 2018, 5(7), 2737–2741. doi: 10.1021/acsphotonics.8b00484
  3. Mattila, J.T.; Beaino, W.; Maiello, P.; Coleman, M.T.; White, A.G.; Scanga, C.A.; Flynn, J.A.; Anderson, C.J. Positron Emission Tomography Imaging of Macaques with Tuberculosis Identifies Temporal Changes in Granuloma Glucose Metabolism and Integrin α4β1-Expressing Immune Cells. Journal of immunology, 2017, 199(2), 806–815. doi: 10.4049/jimmunol.1700231
  4. Soni, K.S.; Lei, F.; Desale, S.S.; Marky, L.A.; Cohen, S.M.; Bronich, T.K. Tuning polypeptide-based micellar carrier for efficient combination therapy of ErbB2-positive breast cancer. Journal of Controlled Release, 2017, 264, 276–287. doi: 10.1016/j.jconrel.2017.08.038
  5. Melle, A.; Balaceanu, A.; Kather, M.; Wu, Y.; Gau, E.; Sun, W.; Huang, X.; Shi, X.; Karperien, M.; Pich, A. Stimuli-Responsive Poly(N}-vinylcaprolactam-co-2-methoxyethyl acrylate) Core-Shell Microgels: Facile Synthesis, Modulation of Surface Properties and Controlled Internalisation into Cells. Journal of Materials Chemistry B, 2016, 4(30), 5127–5137. doi: 10.1039/c6tb01196a
  6. Kwok, S.J.J.; Choi, M.; Bhayana, B.; Zhang, X.; Ran, C.; Yun, S.-H. Two-photon excited photoconversion of cyanine-based dyes. Scientific Reports, 2016, 6, 23866. doi: 10.1038/srep23866
  7. Xue, M.; Wei, W.; Su, Y.; Johnson, D.; Heath, J.R. Supramolecular Probes for Assessing Glutamine Uptake Enable Semi-Quantitative Metabolic Models in Single Cells. Journal of the American Chemical Society, 2016, 138(9), 3085–3093. doi: 10.1021/jacs.5b12187

Cyanine3 hydrazide

  1. Zhao, Meng and Börner, Richard and Sigel, Roland K. O. and Freisinger, Eva. Site-Specific Dual-Color Labeling of Long RNAs. Methods in Molecular Biology, 2020, 2106, 253–270. doi: 10.1007/978-1-0716-0231-7_16
  2. Zhang, J.; Chetnani, B.; Cormack, E.D.; Alonso, D.; Liu, W.; Mondragon, A.; Fei, J. Specific structural elements of the T-box riboswitch drive the two-step binding of the tRNA ligand. eLife, 2018, 7, e39518. doi: 10.7554/eLife.39518
  3. Cui, Z.; Wu, Y.; Mureev, S.; Alexandrov, K. Oligonucleotide-mediated tRNA sequestration enables one-pot sense codon reassignment in vitro. Nucleic Acids Research, 2018, 46(12), 6387–6400. doi: 10.1093/nar/gky365
  4. Porciani, D.; Cardwell, L.N.; Tawiah, K.d.; Alam, K.K.; Lange, M.J.; Daniels, M.A.; Burke, D.H. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines. Nature Communications, 2018, 9(1), 2283. doi: 10.1038/s41467-018-04691-x
  5. Poudyal, R.R.; Nguyen, P.D.M.; Lokugamage, M.P.; Callaway, M.K.; Gavette, J.V.; Krishnamurthy, R.; Burke, D.H. Nucleobase modification by an RNA enzyme. Nucleic Acids Research, 2017, 45(3), 1345–1354. doi: 10.1093/nar/gkw1199
  6. Boone, C.; Grove, R.; Adamcova, D.; Braga, C.; Adamec, J. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics and bioinformatics. Proteomics, 2016, 16(13), 1889–1903. doi: 10.1002/pmic.201500546

Cyanine3 maleimide

  1. Yang, M.; Zhang, L.; Sun, R.; Zhong, W.; Yang, Y.; Chen, C. Streptococcus pyogenes Cas9 displays biased one-dimensional diffusion on dsDNA to search for a target. bioRxiv, preprint. doi: 10.1101/754564
  2. Budiardjo, S.J.; Deay, J.J.; Calkins, A.L.; Wimalasena, V.K.; Montezano, D.; Biteen, J.S.; Slusky, J.S.G. Colicin E1 Fragments Potentiate Antibiotics by Plugging TolC. bioRxiv, preprint. doi: 10.1101/692251
  3. Zhang, N.; Shi, S.; Yoo, B.; Yuan, X.; Li, W.; Zhang, S. 2D-HELS MS Seq: A General LC-MS-Based Method for Direct and de novo Sequencing of RNA Mixtures with Different Nucleotide Modifications. Journal of Visualized Experiments, 2020, e61281. doi: 10.3791/61281
  4. Fliervoet, L.A.L.; Lisitsyna, E.S.; Durandin, N.A.; Kotsis, I.; Maas-Bakker, R.F.M.; Yliperttula, M.; Hennink, W.E.; Vuorimaa-Laukkanen, E.; Vermonden, T. Structure and dynamics of thermosensitive pDNA polyplexes studied by time-resolved fluorescence spectroscopy. Biomacromolecules, 2020, 21(1), 73–88. doi: 10.1021/acs.biomac.9b00896
  5. Liu, J.; Lee, R.; Britton, B.M.; London, J.A.; Yang, K.; Hanne, J.; Lee, J.-B.; Fishel, R. MutL sliding clamps coordinate exonuclease-independent Escherichia coli mismatch repair. Nature Communications, 2019. doi: 10.1038/s41467-019-13191-5
  6. Zhang, N.; Shi, S.; Jia, T.Z.; Ziegler, A.; Yoo, B.; Yuan, X.; Li, W.; Zhang, S. A general LC-MS-based RNA sequencing method for direct analysis of multiple-base modifications in RNA mixtures. Nucleic Acids Research, 2019, 47(20), e125. doi: 10.1093/nar/gkz731
  7. Catipovic, M.A.; Bauer, B.W.; Loparo, J.J.; Rapoport, T.A. Protein translocation by the SecA ATPase occurs by a power-stroke mechanism. EMBO Journal, 2019, 38(9), e101140. doi: 10.15252/embj.2018101140
  8. Armache, J.P.; Gamarra, N.; Johnson, S.L.; Leonard, J.D.; Wu, S.; Narlikar, G.J.; Cheng, Y. Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. eLife, 2019, 8, e46057. doi: 10.7554/eLife.46057
  9. Singh, R.K.; Fan, J.; Gioacchini, N.; Watanabe, S.; Bilsel, O.; Peterson, C.L. Transient Kinetic Analysis of SWR1C-Catalyzed H2A.Z Deposition Unravels the Impact of Nucleosome Dynamics and the Asymmetry of Histone Exchange. Cell Reports, 2019, 27, 374–386.e4. doi: 10.1016/j.celrep.2019.03.035
  10. Gagni, P.; Romanato, A.; Bergamaschi, G.; Bettotti, P.; Vanna, R.; Piotto, C.; Morasso, C.F.; Chiari, M.; Cretich, M.; Gori, A. A self-assembling peptide hydrogel for ultrarapid 3D bioassays. Nanoscale Advances, 2019, 1(2), 490–497. doi: 10.1039/c8na00158h
  11. Wu, B.; Zhang, H.; Sun, R.; Peng, S.; Cooperman, B.S.; Goldman, Y.E.; Chen, C. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. Nucleic Acids Research, 2018, 46(18), 9736–9748. doi: 10.1093/nar/gky636
  12. Liu, G.W.; Prossnitz, A.N.; Eng, D.G.; Cheng, Y.; Subrahmanyam, N.; Pippin, J.W.; Lamm, R.J.; Ngambenjawong, C.; Ghandehari, H.; Shankland, S.J.; Pun, S.H. Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials, 2018, 178, 317–325. doi: 10.1016/j.biomaterials.2018.06.001
  13. Wojcik, F.; Dann, G.P.; Beh, L.Y.; Debelouchina, G.T.; Hofmann, R.; Muir, T.W. Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants. Nature Communications, 2018, 9, 1394. doi: 10.1038/s41467-018-03895-5
  14. Gadkari, V.V.; Harvey, S.R.; Raper, A.T.; Chu, W.-T.; Wang, J.; Wysocki, V.H.; Suo, Z. Investigation of sliding DNA clamp dynamics by single-molecule fluorescence, mass spectrometry and structure-based modeling. Nucleic Acids Research, 2018, 46(6), 3103–3118. doi: 10.1093/nar/gky125
  15. Raper, A.T.; Stephenson, A.A.; Suo, Z. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9. Journal of the American Chemical Society, 2018, 140(8), 2971–2984. doi: 10.1021/jacs.7b13047
  16. Condon, S.G.F.; Mahbuba, D.-A.; Armstrong, C.R.; Díaz-Vázquez, G.; Craven, S.J.; LaPointe, L.M.; Khadria, A.S.; Chadda, R.; Crooks, J.A.; Rangarajan, N.; Weibel, D.B.; Hoskins, A.A.; Robertson, J.L.; Cui, Q.; Senes, A. The FtsLB sub-complex of the bacterial divisome is tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. Journal of Biological Chemistry, 2018, 293(5), 1623–1641. doi: 10.1074/jbc.RA117.000426
  17. Deyaert, E.; Wauters, L.; Guaitoli, G.; Konijnenberg, A.; Leemans, M.; Terheyden, S.; Petrovic, A.; Gallardo, R.; Nederveen-Schippers, L.M.; Athanasopoulos, P.S.; Pots, H.; Van Haastert, P.J.M.; Sobott, F.; Gloeckner, C.J.; Efremov, R.; Kortholt, A.; Versées, W. A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover. Nature Communications, 2017, 8(1), 1008. doi: 10.1038/s41467-017-01103-4
  18. Mateju, D.; Franzmann, T.M.; Patel, A.; Kopach, A.; Boczek, E.E.; Maharana, S.; Lee, H.O.; Carra, S.; Hyman, A.A.; Alberti, S. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. The EMBO Journal, 2017, 36(12), 1669–1687. doi: 10.15252/embj.201695957
  19. Maity, S.; Hashemi, M.; Lyubchenko, Y.L. Nano-assembly of amyloid β peptide: role of the hairpin fold. Scientific Reports, 2017, 7, 2344. doi: 10.1038/s41598-017-02454-0
  20. Wang, H.; Wu, J.; Xu, L.; Xie, K.; Chen, C.; Dong, Y. Albumin Nanoparticle Encapsulation of Potent Cytotoxic Therapeutics Shows Sustained Drug Release and Alleviates Cancer Drug Toxicity. Chemical Communications, 2017, 53(17), 2618–2621. doi: 10.1039/c6cc08978j
  21. Maity, S.; Viazovkina, E.; Gall, A.; Lyubchenko, Y.L. Single-molecule probing of amyloid nano-ensembles using the polymer nanoarray approach. Physical Chemistry Chemical Physics, 2017, 19(25), 16387–16394. doi: 10.1039/c7cp02691a
  22. Xue, C.; Whitis, N.R.; Sashital, D.G. Conformational Control of Cascade Interference and Priming Activities in CRISPR Immunity. Molecular Cell, 2016, 64(4), 826–834. doi: 10.1016/j.molcel.2016.09.033
  23. Chiu, H.-Y.; Deng, W.; Engelke, H.; Helma, J.; Leonhardt, H.; Bein, T. Intracellular chromobody delivery by mesoporous silica nanoparticles for antigen targeting and visualization in real time. Scientific Reports, 2016, 6, 25019. doi: 10.1038/srep25019
  24. Gaitzsch, J.; Delahaye, M.; Poma, A.; Du Prez, F.; Battaglia, G. Comparison of metal free polymer-dye conjugation strategies in protic solvents. Polymer Chemistry, 2016, 7(17), 3046–3055;. doi: 10.1039/c6py00518g
  25. Shrivastava, R.; Köster, D.; Kalme, S.; Mayor, S.; Neerathilingam, M. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro. PLoS One, 2015, 10(4), e0123428. doi: 10.1371/journal.pone.0123428
  26. Schmidt, W.M.; Lehman, W.; Moore, J.R. Direct observation of tropomyosin binding to actin filaments. Cytoskeleton, 2015, 72(6), 292–303. doi: 10.1002/cm.21225
  27. Guo, Y.; Yuan, H.; Claudio, N.M.; Kura, S.; Shakerdge, N.; Mempel, T.R.; Bacskai, B.J.; Josephson, L. PEG-Like Nanoprobes: Multimodal, Pharmacokinetically and Optically Tunable Nanomaterials. PLoS ONE, 2014, 9(4), e95406. doi: 10.1371/journal.pone.0095406
  28. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  29. Schulze, R.J.; Komar, J.; Botte, M.; Allen, W.J.; Whitehouse, S.; Gold, V.A.M.; Lycklama a Nijeholt, J.A.; Huard, K.; Berger, I.; Schaffitzel, C. et al. Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Proceedings of the National Academy of Sciences of the U.S.A., 2014, 111(13), 4844-4849. doi: 10.1073/pnas.1315901111

Cyanine3 tetrazine

  1. Bai, M.; Cao, X.; Huang, W.; Chen, F.; Zhao, Y.; Xue, J.; Li, Y.; Cheng, Y.; Zhang, L.; Zhao, Y. Visualizing Newly Synthesized RNA by Bioorthogonal Labeling-primed DNA Amplification. Analytical Chemistry, 2020, 92(12), 8444–8449. doi: 10.1021/acs.analchem.0c01161
  2. Moutsiopoulou, A.; Broyles, D.; Joda, H.; Dikici, E.; Kaur, A.; Kaifer, A.E.; Daunert, S.; Deo, S.K. Bioluminescent Protein-Inhibitor Pair in the Design of a Molecular Aptamer Beacon Biosensing System. Analytical Chemistry, 2020, 92(11), 7393–7398. doi: 10.1021/acs.analchem.0c00518
  3. Chen, F.; Bai, M.; Cao, X.; Zhao, Y.; Xue, J.; Zhao, Y. Click-encoded rolling FISH for visualizing single-cell RNA polyadenylation and structures. Nucleic Acids Research, 2019, 47(22), e145. doi: 10.1093/nar/gkz852

Cyanine3.5 NHS ester

  1. Lee, S.A.; Biteen, J.S. Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 5764–5769. doi: 10.1021/acs.jpclett.9b02480
  2. Kravchuk, O.I.; Lyupina, Y.V.; Erokhov, P.A.; Finoshin, A.D.; Adameyko, K.I.; Mishyna, M.Y.; Moiseenko, A.V.; Sokolova, O.S.; Orlova, O.V.; Beljelarskaya, S.N.; Serebryakova, M.V.; Indeykina, M.I.; Bugrova, A.E.; Kononikhin, A.S.; Mikhailov, V.S. Characterization of the 20S proteasome of the lepidopteran, Spodoptera frugiperda. Biochimica et Biophysica Acta - Proteins and Proteomics, 2019, 1867(9), 840–853. doi: 10.1016/j.bbapap.2019.06.010
  3. Wang, C.; Niederstrasser, H.; Douglas, P.M.; Lin, R.; Jaramillo, J.; Li, Y.; Olswald, N.W.; Zhou, A.; McMillan, E.A.; Mendiratta, S.; Wang, Z.; Zhao, T.; Lin, Z.; Luo, M.; Huang, G.; Brekken, R.A.; Posner, B.A.; MacMillan, J.B.; Gao, J.; White, M.A. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nature Communications, 2017, 8, 2270. doi: 10.1038/s41467-017-02332-3
  4. Massey, M.; Kim, H.; Conroy, E.M.; Algar, W.R. Expanded Quantum Dot-Based Concentric Förster Resonance Energy Transfer: Adding and Characterizing Energy-Transfer Pathways for Triply Multiplexed Biosensing. The Journal of Physical Chemistry C, 2017, 121(24), 13345–13356. doi: 10.1021/acs.jpcc.7b02739
  5. Wang, C.; Wang, Y.; Li, Y.; Bodemann, B.; Zhao, T.; Ma, X.; Huang, G.; Hu, Z.; DeBerardinis, R.J.; White, M.A.; Gao, J. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nature Communications, 2015, 6, 8524. doi: 10.1038/ncomms9524
  6. Fu, B.; Flynn, J.D.; Isaacoff, B.P.; Rowland, D.J.; Biteen, J.S. Super-Resolving the Distance-Dependent Plasmon-Enhanced Fluorescence of Single Dye and Fluorescent Protein Molecules. The Journal of Physical Chemistry C, 2015, 119(33), 19350–19358. doi: 10.1021/acs.jpcc.5b05154

Cyanine3.5 azide

  1. Jandl, B.; Sedghiniya, S.; Carstens, A.; Astakhova, K. Peptide–Fluorophore Hydrogel as a Signal Boosting Approach in Rapid Detection of Cancer DNA. ACS Omega, 2019, 4(9), 13889–13895. doi: 10.1021/acsomega.9b01586
  2. Gaitzsch, J.; Delahaye, M.; Poma, A.; Du Prez, F.; Battaglia, G. Comparison of metal free polymer-dye conjugation strategies in protic solvents. Polymer Chemistry, 2016, 7(17), 3046–3055;. doi: 10.1039/c6py00518g
  3. Astakhova, I.K.; Wengel, J. Interfacing Click Chemistry with Automated Oligonucleotide Synthesis for the Preparation of Fluorescent DNA Probes Containing Internal Xanthene and Cyanine Dyes. Chemistry - a European Journal, 2013, 19(3), 1112-1122. doi: 10.1002/chem.201202621

Cyanine3.5 carboxylic acid

  1. Kwok, S.J.J.; Choi, M.; Bhayana, B.; Zhang, X.; Ran, C.; Yun, S.-H. Two-photon excited photoconversion of cyanine-based dyes. Scientific Reports, 2016, 6, 23866. doi: 10.1038/srep23866

Cyanine5 DBCO

  1. Islam, M.R.; Nguy, C.; Pandit, S.; Lyon, L.A. Design and Synthesis of Core–Shell Microgels with One‐Step Clickable Crosslinked Cores and Ultralow Crosslinked Shells. Macromolecular Chemistry and Physics, 2020, 221(19), 2000156. doi: 10.1002/macp.202000156
  2. Liu, W.; Zhao, W.; Bai, X.; Jin, S.; Li, Y.; Qiu, C.; Pan, L.; Ding, D.; Xu, Y.; Zhou, Z.; Chen, S. High antitumor activity of Sortase A-generated anti-CD20 antibody fragment drug conjugates. European Journal of Pharmaceutical Sciences, 2019, 134, 81–92. doi: 10.1016/j.ejps.2019.04.015

Cyanine5 NHS ester

  1. Chiou, A.E.; Hinckley, J.A.; Khaitan, R:; Varsano, N.; Wang, J.; Malarkey, H.F.; Hernandez, C.J.; Williams, R.M.; Estroff, L.A.; Weiner, S.; Addadi, L.; Wiesner, U.B.; Fischbach, C. Fluorescent Silica Nanoparticles to Label Metastatic Tumor Cells in Mineralized Bone Microenvironments. Small, in press. doi: 10.1002/smll.202001432
  2. Janiszewski, T.; Kołt, S.; Kaiserman, D.; Snipas, S.; Li, S.; Kulbacka, J.; Saczko, J.; Bovenschen, N.; Salvesen, G.; Drąg, M.; Bird, P.I.; Kasperkiewicz, P. Noninvasive optical detection of Granzyme B from natural killer cells using enzyme-activated fluorogenic probes. bioRxiv, preprint. doi: 10.1101/2019.12.16.875070
  3. Poreba, M.; Groborz, K.; Rut, W.; Pore, M.; Snipas, S.J.; Vizovisek, M.; Turk, B.; Kuhn, P.; Drag, M.; Salvesen, G.S. The Activome: multiplexed probing of activity of proteolytic enzymes using mass cytometry-compatible activity-based probes (TOF-probes). bioRxiv, preprint. doi: 10.1101/775627
  4. Yang, S.W.; Huang, X.; Lin, W.; Min, J.; Miller, D.J.; Mayasundari, A.; Rodrigues, P.; Griffith, E.C.; Gee, C.T.; Li, L.; Li, W.; Lee, R.E.; Rankovic, Z.; Chen, T.; Potts, P.R. Structural basis for substrate recognition and chemical inhibition of oncogenic MAGE ubiquitin ligases. Nature Communications, 2020, 11, 4931. doi: 10.1038/s41467-020-18708-x
  5. Liu, H.-J.; Wang, M.; Hu, X.; Shi, S.; Xu, P. Enhanced Photothermal Therapy through the In Situ Activation of a Temperature and Redox Dual-Sensitive Nanoreservoir of Triptolide. Small, 2020, 16(38), e2003398. doi: 10.1002/smll.202003398
  6. Susnik, E.; Taladriz-Blanco, P.; Drasler, B.; Balog, S.; Petri-Fink, A.; Rothen-Rutishauser, B. Increased Uptake of Silica Nanoparticles in Inflamed Macrophages but Not upon Co-Exposure to Micron-Sized Particles. Cells, 2020, 9(9), 2099. doi: 10.3390/cells9092099
  7. Honda, Y.; Nomoto, T.; Matsui, M.; Takemoto, H.; Kaihara, Y.; Miura, Y.; Nishiyama, N. Sequential Self-Assembly Using Tannic Acid and Phenylboronic Acid-Modified Copolymers for Potential Protein Delivery. Biomacromolecules, 2020, 21(9), 3826–3835. doi: 10.1021/acs.biomac.0c00903
  8. Göbel, M.W.; Bolz, M.; Thomas, L.; Scheffer, U.; Kalden, E.; Hartmann, R.K. Redirection of miRNA-Argonaute Complexes to Specific Target Sites by Synthetic Adaptor Molecules. Chemistry & Biodiversity, 2020, 17(7), e2000272. doi: 10.1002/cbdv.202000272
  9. Aronsson, C.; Jury, M.; Naeimipour, S.; Rasti Boroojeni, F.; Christoffersson, J.; Lifwergren, P.; Mandenius, C.-F.; Selegård, R.; Aili, D. Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting. Biofabrication, 2020, 12(3), 035031. doi: 10.1088/1758-5090/ab9490
  10. Palumbo, C.M.; Gutierrez-Bujari, J.M.; O'Geen, H.; Segal, D.J.; Beal, P. Versatile 3' Functionalization of CRISPR Single Guide RNA. ChemBioChem, 2020, 21(11), 1633–1640. doi: 10.1002/cbic.201900736
  11. Korzhikov-Vlakh, V.; Katernuk, I.; Pilipenko, I.; Lavrentieva, A.; Guryanov, I.; Sharoyko, V.; Manshina, A.A.; Tennikova, T.B. Photosensitive Poly-L-lysine/Heparin Interpolyelectrolyte Complexes for Delivery of Genetic Drugs. Polymers, 2020, 12(5), 1077. doi: 10.3390/polym12051077
  12. Chen, Y.; Shen, W.; Tang, C.; Huang, J.; Fan, C.; Yin, Z.; Hu, Y.; Chen, W.; Ouyang, H.; Zhou, Y.; Mao, Z.; Chen, X. Targeted pathological collagen delivery of sustained-release rapamycin to prevent heterotopic ossification. Science Advances, 2020, 6(18), eaay9526. doi: 10.1126/sciadv.aay9526
  13. Jiang, S.; Mottola, M.; Han, S.; Thiramanas, R.; Graf, R.; Lieberwirth, I.; Mailänder, V.; Crespy, D.; Landfester, K. Versatile Preparation of Silica Nanocapsules for Biomedical Applications. Particle & Particle Systems Characterization, 2020, 37(4), 1900484. doi: 10.1002/ppsc.201900484
  14. Kołt, S.; Janiszewski, T.; Kaiserman, D.; Modrzycka, S.; Snipas, S.J.; Salvesen, G.; Dra G, M.; Bird, P.I.; Kasperkiewicz, P. Detection of Active Granzyme A in NK92 Cells with Fluorescent Activity-Based Probe. Journal of Medicinal Chemistry, 2020, 63(6), 3359–3369. doi: 10.1021/acs.jmedchem.9b02042
  15. Jiang, S.; Prozeller, D.; Pereira, J.; Simon, J.; Han, S.; Wirsching, S.; Fichter, M.; Mottola, M.; Lieberwirth, I.; Morsbach, S.; Mailänder, V.; Gehring, S.; Crespy, D.; Landfester, K. Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale, 2020, 12(4), 2626–2637. doi: 10.1039/c9nr09879h
  16. Kwon, S.-H.; Wi, T.; Park, Y.I.; Kim, M.W.; Lee, G.; Higaki, T.; Choi, J.H.; Lee, R. Non-invasive early detection of calpain 2-enriched non-small cell lung cancer using a human serum albumin-bounded calpain 2 nanosensor. Bioconjugate Chemistry, 2020, 31(3), 803–812. doi: 10.1021/acs.bioconjchem.9b00870
  17. Basu, U.; Lee, S.-W.; Deshpande, A.; Shen, J.; Sohn, B.-K.; Cho, H.; Kim, H.; Patel, S.S. The C-terminal tail of the yeast mitochondrial transcription factor Mtf1 coordinates template strand alignment, DNA scrunching and timely transition into elongation. Nucleic Acids Research, 2020, 48(5), 2604–2620. doi: 10.1093/nar/gkaa040
  18. Sheykhzadeh, S.; Luo, M.; Peng, B.; White, J.; Abdalla, Y.; Tang, T.; Mäkilä, E.; Voelcker, N.H.; Tong, W.Y. Transferrin-targeted porous silicon nanoparticles reduce glioblastoma cell migration across tight extracellular space. Scientific Reports, 2020, 10, 2320. doi: 10.1038/s41598-020-59146-5
  19. Novoselova, M.V.; Loh, H.M.; Trushina, D.B.; Ketkar, A.; Abakumova, T.O.; Zatsepin, T.S.; Kakran, M.; Brzozowska, A.M.; Lau, H.H.; Gorin, D.A.; Antipina, M.N.; Anna, B. Biodegradable Polymeric Multilayer Capsules for Therapy of Lung Cancer. ACS Applied Materials & Interfaces, 2020, 12(5), 5610–5623. doi: 10.1021/acsami.9b21381
  20. Samaridou, E.; Kalamidas, N.; Santalices, I.; Crecente-Campo, J.; Alonso, M.J. Tuning the PEG surface density of the PEG-PGA enveloped Octaarginine-peptide Nanocomplexes. Drug Delivery and Translational Research, 2020, 10(1), 241–258. doi: 10.1007/s13346-019-00678-3
  21. Nomoto, T.; Inoue, Y.; Yao, Y.; Suzuki, M.; Kanamori, K.; Takemoto, H.; Matsui, M.; Tomoda, K.; Nishiyama, N. Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Science Advances, 2020, 6(4), eaaz1722. doi: 10.1126/sciadv.aaz1722
  22. Takemoto, H.; Inaba, T.; Nomoto, T.; Matsui, M.; Liu, X.; Toyoda, M.; Honda, Y.; Taniwaki, K.; Yamada, N.; Kim, J.; Tomoda, K.; Nishiyama, N. Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects. Biomaterials, 2020, 235, 119804. doi: 10.1016/j.biomaterials.2020.119804
  23. Naidu, P.S.R.; Denham, E.; Bartlett, C.A.; McGonigle, T.; Taylor, N.L.; Norret, M.; Smith, N.M.; Dunlop, S.A.; Iyer, K.S.; Fitzgerald, M. Protein corona formation moderates the release kinetics of ion channel antagonists from transferrin-functionalized polymeric nanoparticles. RSC Advances, 2020, 10(5), 2856–2869. doi: 10.1039/c9ra09523c
  24. Zhang, P.; Gao, Z.; Cui, J.; Hao, J. Dual-Stimuli-Responsive Polypeptide Nanoparticles for Photothermal and Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3(1), 561–569. doi: 10.1021/acsabm.9b00964
  25. Lu, H.; Su, J.; Mamdooh, R.; Li, Y.; Stenzel, M.H. Cellular Uptake of Gold Nanoparticles and Their Movement in 3D Multicellular Tumor Spheroids: Effect of Molecular Weight and Grafting Density of Poly(2-hydroxyl ethyl acrylate). Macromolecular Bioscience, 2020, 20(1), e1900221. doi: 10.1002/mabi.201900221
  26. Schiapparelli, P.; Zhang, P.; Lara-Velazquez, M.; Guerrero-Cazares, H.; Lin, R.; Su, H.; Chakroun, R.W.; Tusa, M.; Quiñones-Hinojosa, A.; Cui, H. Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. Journal of Controlled Release, 2020, 319, 311–321. doi: 10.1016/j.jconrel.2020.01.003
  27. Radford, D.C.; Yang, J.; Doan, M.C.; Li, L.; Dixon, A.S.; Owen, S.C.; Kopeček, J. Multivalent HER2-binding polymer conjugates facilitate rapid endocytosis and enhance intracellular drug delivery. Journal of Controlled Release, 2020, 319, 285–299. doi: 10.1016/j.jconrel.2019.12.049
  28. Nishimura, T.; Mitsunaga, M.; Ito, K.; Kobayashi, H.; Saruta, M. Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT. Gastric Cancer, 2020, 23(1), 82–94. doi: 10.1007/s10120-019-00988-y
  29. Zhang, R.; Liu, R.; Liu, C.; Pan, L.; Qi, Y.; Cheng, J.; Guo, J.; Jia, Y.; Ding, J.; Zhang, J.; Hu, H. A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases. Biomaterials, 2020, 230, 119605. doi: 10.1016/j.biomaterials.2019.119605
  30. Faidra Angelerou, M.G.; Markus, R.; Paraskevopoulou, V.; Foralosso, R.; Clarke, P.; Alvarez, C.V.; Chenlo, M.; Johnson, L.; Rutland, C.; Allen, S.; Brasnett, C.; Seddon, A.; Zelzer, M.; Marlow, M. Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo. Journal of Controlled Release, 2020, 317, 118–129. doi: 10.1016/j.jconrel.2019.10.011
  31. Jeon, M.; Lin, G.; Stephen, Z.R.; Kato, F.L.; Zhang, M. Paclitaxel-Loaded Iron Oxide Nanoparticles for Targeted Breast Cancer Therapy. Advanced Therapeutics, 2019, 2(12), 1900081. doi: 10.1002/adtp.201900081
  32. Hu, H.; Wang, B.; Lai, C.; Xu, X.; Zhen, Z.; Zhou, H.; Xu, D. iRGD-paclitaxel conjugate nanoparticles for targeted paclitaxel delivery. Drug Development Research, 2019, 80(8), 1080–1088. doi: 10.1002/ddr.21589
  33. Hofmann, F.J.; Bodnarchuk, M.; Dirin, D.N.; Vogelsang, J.; Kovalenko, M.V.; Lupton, J.M. Energy transfer from perovskite nanocrystals to dye molecules does not occur by FRET. Nano Letters, 2019, 19(12), 8896–8902. doi: 10.1021/acs.nanolett.9b03779
  34. Dones, J.M.; Tanrikulu, I.C.; Chacko, J.V.; Schroeder, A.B.; Hoang, T.T.; Gibson, A.L.F.; Eliceiri, K.W.; Raines, R.T. Optimization of interstrand interactions enables burn detection with a collagen-mimetic peptide. Organic & Biomolecular Chemistry, 2019, 17(46), 9906–9912. doi: 10.1039/c9ob01839e
  35. Zhou, L.; Wu, Y.; Luo, Y.; Li, H.; Meng, X.; Liu, Cl; Xiang, J.; Zhang, P.; Gong, P.; Cai, L. Mitochondria-localized Self-reporting Small Molecule Decorated Theranostic Agents for Cancer-organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2(11), 5164–5173. doi: 10.1021/acsabm.9b00811
  36. Zhu, J.; Li, Z.; Zhang, C.; Lin, L.; Cao, S.; Che, H.; Shi, X.; Wang, H.; van Hest, J.C.M. Single enzyme loaded nanoparticles for combinational ultrasound-guided focused ultrasound ablation and hypoxia-relieved chemotherapy. Theranostics, 2019, 9(26), 8048–8060. doi: 10.7150/thno.37054
  37. Poreba, M.; Groborz, K.; Vizovisek, M.; Maruggi, M.; Turk, D.; Turk, B.; Powis, G.; Drag, M.; Salvesen, G.S. Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples. Chemical Science, 2019, 10(36), 8461–8477. doi: 10.1039/c9sc00997c
  38. Simpson, J.D.; Ediriweera, G.R.; Howard, C.B.; Fletcher, N.L.; Bell, C.A.; Thurecht, K.J. Polymer design and component selection contribute to uptake, distribution & trafficking behaviours of polyethylene glycol hyperbranched polymers in live MDA-MB-468 breast cancer cells. Biomaterials Science, 2019, 7(11), 4661–4674. doi: 10.1039/c9bm00957d
  39. Luo, M.; Lewik, G.; Ratcliffe, J.C.; Choi, C.H.J.; Mäkilä, E.; Tong, W.Y.; Voelcker, N.H. Systematic Evaluation of Transferrin-Modified Porous Silicon Nanoparticles for Targeted Delivery of Doxorubicin to Glioblastoma. ACS Applied Materials & Interfaces, 2019, 11(37), 33637–33649. doi: 10.1021/acsami.9b10787
  40. Pinder, C.; Matsuo, Y.; Maurer, S.P.; Toda, T. Kinesin-8 and Dis1/TOG collaborate to limit spindle elongation from prophase to anaphase A for proper chromosome segregation in fission yeast. Journal of Cell Science, 2019, 132(18), jcs232306. doi: 10.1242/jcs.232306
  41. Wang, R.; Yao, X.; Li, T.; Li, X.; Jin, M.; Ni, Y.; Yuan, W.; Xie, X.; Lu, L.; Li, M. Reversible Thermoresponsive Hydrogel Fabricated from Natural Biopolymer for the Improvement of Critical Limb Ischemia by Controlling Release of Stem Cells. Advanced Healthcare Materials, 2019, 8(20), 1900967. doi: 10.1002/adhm.201900967
  42. Yen, T.-Y.; Stephen, Z.R.; Lin, G.; Mu, Q.; Jeon, M.; Untoro, S.; Welsh, P.; Zhang, M. Catalase-Functionalized Iron Oxide Nanoparticles Reverse Hypoxia-Induced Chemotherapeutic Resistance. Advanced Healthcare Materials, 2019, 8(20), 1900826. doi: 10.1002/adhm.201900826
  43. Rho, J.Y.; Cox, H.; Mansfield, E.D.H.; Ellacott, S.H.; Peltier, R.; Brendel, J.C.; Hartlieb, M.; Waigh, T.A.; Perrier, S. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nature Communications, 2019, 10, 4708. doi: 10.1038/s41467-019-12586-8
  44. Li, L.; Wang, J.; Li, Y.; Radford, D.C.; Yang, J.; Kopeček, J. Broadening and Enhancing Functions of Antibodies by Self-Assembling Multimerization at Cell Surface. ACS Nano, 2019, 13(10), 11422–11432. doi: 10.1021/acsnano.9b04868
  45. Zhou, X.; Ling, K.; Liu, M.; Zhang, X.; Ding, J.; Dong, Y.; Liang, Z.; Li, J.; Zhang, J. Targeted Delivery of Cisplatin-Derived Nanoprecursors via a Biomimetic Yeast Microcapsule for Tumor Therapy by the Oral Route. Theranostics, 2019, 9(22), 6568–6586. doi: 10.7150/thno.35353
  46. Wang, Y.; Yuan, Q.; Feng, W.; Pu, W.; Ding, J.; Zhang, H.; Li, X.; Yang, B.; Dai, Q.; Cheng, L.; Wang, J.; Sun, F.; Zhang, D. Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. Journal of Nanobiotechnology, 2019, 17, 103. doi: 10.1186/s12951-019-0537-4
  47. Lee, S.H.; Park, O.K.; Kim, J.; Shin, K.; Pack, C.G.; Kim, K.; Ko, G.; Lee, N.; Kwon, S.-H.; Hyeon, T. Deep tumor penetration of drug-loaded nanoparticles by click reaction-assisted immune cell targeting strategy. Journal of the American Chemical Society, 2019, 141(35), 13829–13840. doi: 10.1021/jacs.9b04621
  48. Kim, H.J.; Yen, L.; Wongpalee, S.P.; Kirshner, J.A.; Mehta, N.; Xue, Y.; Johnston, J.B.; Burlingame, A.L.; Kim, J.K.; Loparo, J.J.; Jacobsen, S.E. The Gene-Silencing Protein MORC-1 Topologically Entraps DNA and Forms Multimeric Assemblies to Cause DNA Compaction. Molecular Cell, 2019, 75, 700–710. doi: 10.1016/j.molcel.2019.07.032
  49. Gaikwad, H.; Wang, G.; Smith, W.J.; Alexander, K.L.; D'Alessandro, A.; Zhang, W.; Purev, E.; Simberg, D. Clickable Methyltetrazine-Indocarbocyanine Lipids: A Multicolor Tool Kit for Efficient Modifications of Cell Membranes. Bioconjugate Chemistry, 2019, 30(8), 2106–2114. doi: 10.1021/acs.bioconjchem.9b00202
  50. Yim, M.S.; Son, E.J.; Kim, H.N.; Ryu, E.K. A TAT-conjugated peptide inhibitor of polo-like kinase 1 for in vivo tumor imaging. Journal of Analytical Science and Technology, 2019, 10(1), 26. doi: 10.1186/s40543-019-0187-z
  51. Li, Z.; Lin, J.; Sulchek, T.; Cruz, M.A.; Wu, J.; Dong, J.-F.; Zhu, C. Domain specific mechanical modulation of VWF-ADAMTS13 interaction. Molecular Biology of the Cell, 2019, 30(16), 1920–1929. doi: 10.1091/mbc.E19-01-0021
  52. Huang, H.; Zhou, M.; Ruan, L.; Wang, D.; Lu, H.; Zhang, J.; Chen, J.; Hu, Y.; Chai, Z. AMPK mediates the neurotoxicity of iron oxide nanoparticles retained in mitochondria or lysosomes. Metallomics, 2019, 11(7), 1200–1206. doi: 10.1039/c9mt00103d
  53. Truebenbach, I.; Kern, S.; Loy, D.M.; Höhn, M.; Gorges, J.; Kazmaier, U.; Wagner, E. Combination Chemotherapy of L1210 Tumors in Mice with Pretubulysin and Methotrexate Lipo-Oligomer Nanoparticles. Molecular Pharmaceutics, 2019, 16(6), 2405–2417. doi: 10.1021/acs.molpharmaceut.9b00038
  54. Parayath, N.N.; Gandham, S.K.; Leslie, F.; Amiji, M.M. Improved Anti-TumorEfficacy of Paclitaxel in Combination with MicroRNA-125b-based Tumor-Associated Macrophage Repolarization in Epithelial Ovarian Cancer. Cancer Letters, 2019, 461, 1–9. doi: 10.1016/j.canlet.2019.07.002
  55. Shi, B.; Wu, M.; Li, Z.; Xie, Z.; Wei, X.; Fan, J.; Xu, Y.; Ding, D.; Akash, S.H.; Chen, S.; Cao, S. Antitumor activity of a 5T4 targeting antibody drug conjugate with a novel payload derived from MMAF via C-Lock linker. Cancer Medicine, 2019, 8(4), 1793–1805. doi: 10.1002/cam4.2066
  56. Andersen, V.L.; Vinther, M.; Kumar, R.; Ries, A.; Wengel, J.; Nielsen, J.S.; Kjems, J. A self-assembled, modular nucleic acid-based nanoscaffold for multivalent theranostic medicine. Theranostics, 2019, 9(9), 2662–2677. doi: 10.7150/thno.32060
  57. Zhang, Q.; Zhang, F.; Li, S.; Liu, R.; Jin, T.; Dou, Y.; Zhou, Z.; Zhang, J. A Multifunctional Nanotherapy for Targeted Treatment of Colon Cancer by Simultaneously Regulating Tumor Microenvironment. Theranostics, 2019, 9(13), 3732–3753. doi: 10.7150/thno.34377
  58. Naidu, P.S.R.; Gavriel, N.; Gray, C.G.G.; Bartlett, C.A.; Toomey, L.M.; Kretzmann, J.; Patalwala, D.; McGonigle, T.; Denham, E.; Hee, C.; Ho, D.; Taylor, N.L.; Norret, M.; Smith, N.M.; Dunlop, S.A.; Iyer, K.S.; Fitzgerald, M. Elucidating the Inability of Functionalized Nanoparticles to Cross the Blood–Brain Barrier and Target Specific Cells In Vivo. ACS Applied Materials & Interfaces, 2019, 11(25), 22085–22095. doi: 10.1021/acsami.9b01356
  59. Li, W.; Yalcin, M.; Bharali, D.J.; Lin, Q.; Godugu, K.; Fujioka, K.; Keating, K.A.; Mousa, S.A. Pharmacokinetics, Biodistribution, and Anti-Angiogenesis Efficacy of Diamino Propane Tetraiodothyroacetic Acid-conjugated Biodegradable Polymeric Nanoparticle. Scientific Reports, 2019, 9(1), 9006. doi: 10.1038/s41598-019-44979-6
  60. Hu, H.; Petrosyan, A.; Osna, N.A.; Liu, T.; Olou, A.A.; Alakhova, D.Y.; Singh, P.K.; Kabanov, A.V.; Faber, E.A.; Bronich, T.K. Pluronic block copolymers enhance the anti-myeloma activity of proteasome inhibitors. Journal of Controlled Release, 2019, 306, 149–164. doi: 10.1016/j.jconrel.2019.05.026
  61. Kang, M.-S.; Ryu, E.; Lee, S.-W.; Park, J.; Ha, N.Y.; Ra, J.S.; Kim, Y.J.; Kim, J.; Abdel-Rahman, M.; Park, S.H.; Lee, K.-Y.; Kim, H.; Kang, S.; Myung, K. Regulation of PCNA cycling on replicating DNA by RFC and RFC-like complexes. Nature Communications, 2019, 10, 2420. doi: 10.1038/s41467-019-10376-w
  62. Ding, Y.; Liu, J.; Li, X.; Xu, L.; Li, C.; Ma, L.; Liu, J.; Ma, R.; An, Y.; Huang, F.; Liu, Y.; Shi, L. Rational design of drug delivery systems for potential programmable drug release and improved therapeutic effect. Materials Chemistry Frontiers, 2019, 3(6), 1159–1167. doi: 10.1039/c9qm00178f
  63. Zhang, C.Y.; Lin, W.; Gao, J.; Shi, X.; Davaritouchaee, M.; Nielsen, A.E.; Mancini, R.J.; Wang, Z. pH-Responsive Nanoparticles Targeted to Lungs for Improved Therapy of Acute Lung Inflammation/Injury. ACS Applied Materials & Interfaces, 2019, 11(18), 16380–16390. doi: 10.1021/acsami.9b04051
  64. Lin, P.-Y.; Chen, K.-H.; Miao, Y.-B.; Chen, H.-L.; Lin, K.-J.; Chen, C.-T.; Yeh, C.-N.; Chang, Y.; Sung, H.-W. Phase-Changeable Nanoemulsions for Oral Delivery of a Therapeutic Peptide: Toward Targeting the Pancreas for Antidiabetic Treatments Using Lymphatic Transport. Advanced Functional Materials, 2019, 29(13), 1809015. doi: 10.1002/adfm.201809015
  65. Xiao, C.; Hu, H.; Yang, H.; Li, S.; Zhou, H.; Ruan, J.; Zhu, Y.; Yang, X.; Li, Z. Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. Nanoscale Advances, 2019, 1(3), 1002–1012. doi: 10.1039/c8na00271a
  66. Madl, C.M.; LeSavage, B.L.; Dewi, R.E.; Lampe, K.J.; Heilshorn, S.C. Matrix Remodeling Enhances the Differentiation Capacity of Neural Progenitor Cells in 3D Hydrogels. Advanced Science, 2019, 6(4), 1801716. doi: 10.1002/advs.201801716
  67. Lee, M.-R.; Raman, N.; Ortiz-Bermúdez, P.; Lynn, D.M.; Palecek, S.P. 14-Helical β-Peptides Elicit Toxicity against C. albicans by Forming Pores in the Cell Membrane and Subsequently Disrupting Intracellular Organelles. Cell Chemical Biology, 2019, 26(2), 289–299.e4. doi: 10.1016/j.chembiol.2018.11.002
  68. Liu, Y.; Li, Q.; Xiong, X.; Zhou, Z. Improved mitochondrial targeting effect of HPMA copolymer by SS20 peptide mediation and nonendocytosis pathway. Journal of Peptide Science, 2019, 25(2), e4133. doi: 10.1002/psc.3144
  69. Cooper, C.E.; Silkstone, G.G.A.; Simons, M.; Rajagopal, B.; Syrett, N.; Shaik, T.; Gretton, S.; Welbourn, E.; Bülow, L.; Eriksson, N.L.; Ronda, L.; Mozzarelli, A.; Eke, A.; Mathe, D.; Reeder, B.J. Engineering Tyrosine Residues into Hemoglobin Enhances Heme Reduction, Decreases Oxidative Stress and Increases Vascular Retention of a Hemoglobin Based Blood Substitute. Free Radical Biology & Medicine, 2019, 134, 106–118. doi: 10.1016/j.freeradbiomed.2018.12.030
  70. Shi, M.; Chen, B.; Mahajan, D.; Boh, B.K.; Zhou, Y.; Dutta, B.; Tie, H.C.; Sze, S.K.; Wu, G.; Lu, L. Amino acids stimulate the endosome-to-Golgi trafficking through Ragulator and small GTPase Arl5. Nature Communications, 2018, 9, 4987. doi: 10.1038/s41467-018-07444-y
  71. Li, Z.; Behrens, A.M.; Ginat, N.; Tzeng, S.Y.; Lu, X.; Sivan, S.; Langer, R.; Jaklenec, A. Biofilm-Inspired Encapsulation of Probiotics for the Treatment of Complex Infections. Advanced Materials, 2018, 30(51), e1803925. doi: 10.1002/adma.201803925
  72. Liu, Y.; Li, Q.; Xiong, X.; Huang, Y.; Zhou, Z. Enhanced cellular uptake by non-endocytic pathway for tumor therapy. Journal of Materials Chemistry B, 2018, 6(45), 7411–7419. doi: 10.1039/c8tb01698d
  73. Zhang, L.; Fang, Y.; Li, L.; Yang, J.; Radford, D.C.; Kopeček, J. Human Serum Albumin-Based Drug-Free Macromolecular Therapeutics: Apoptosis Induction by Coiled-Coil-Mediated Cross-Linking of CD20 Antigens on Lymphoma B Cell Surface. Macromolecular Bioscience, 2018, 18(11), e1800224. doi: 10.1002/mabi.201800224
  74. Ng, S.; Bennett, N.J.; Schulze, J.; Gao, N.; Rademacher, C.; Derda, R. Genetically-encoded Fragment-based Discovery of Glycopeptide Ligands for DC-SIGN. Bioorganic & Medicinal Chemistry, 2018, 26(19), 5368–5377. doi: 10.1016/j.bmc.2018.08.036
  75. Zhang, J.; Chetnani, B.; Cormack, E.D.; Alonso, D.; Liu, W.; Mondragon, A.; Fei, J. Specific structural elements of the T-box riboswitch drive the two-step binding of the tRNA ligand. eLife, 2018, 7, e39518. doi: 10.7554/eLife.39518
  76. Lee, K.; Yu, Y. Lipid Bilayer Disruption by Amphiphilic Janus Nanoparticles: The Role of Janus Balance. Langmuir, 2018, 34(41), 12387–12393. doi: 10.1021/acs.langmuir.8b02298
  77. Wu, B.; Zhang, H.; Sun, R.; Peng, S.; Cooperman, B.S.; Goldman, Y.E.; Chen, C. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. Nucleic Acids Research, 2018, 46(18), 9736–9748. doi: 10.1093/nar/gky636
  78. Khang, M.K.; Zhou, J.; Huang, Y.; Hakamivala, A.; Tang, L. Preparation of a novel injectable in situ-gelling nanoparticle with applications in controlled protein release and cancer cell entrapment. RSC Advances, 2018, 8(60), 34625–34633. doi: 10.1039/c8ra06589f
  79. Besford, Q.A.; Ju, Y.; Wang, T.-Y.; Yun, G.; Cherepanov, P.V.; Hagemeyer, C.E.; Cavalieri, F.; Caruso, F. Self-Assembled Metal-Phenolic Networks on Emulsions as Low-Fouling and pH-Responsive Particles. Small, 2018, 14(39), e1802342. doi: 10.1002/smll.201802342
  80. Wang, Y.; Li, L.; Zhao, W.; Dou, Y.; An, H.; Tao, H.; Xu, X.; Jia, Y.; Lu, S.; Zhang, J.; Hu, H. Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species-Scavenging Nanoparticle with Intrinsic Anti-Inflammatory Activity. ACS Nano, 2018, 12(9), 8943–8960. doi: 10.1021/acsnano.8b02037
  81. Gomez, I.J.; Arnaiz, B.; Cacioppo, M.; Arcudi, F.; Prato, M. Nitrogen-doped Carbon Nanodots for bioimaging and delivery of paclitaxel. Journal of Materials Chemistry B, 2018, 6(35), 5540–5548. doi: 10.1039/c8tb01796d
  82. Xu, C.; Wang, Y.; Yu, H.; Tian, H.; Chen, X. Multifunctional Theranostic Nanoparticles Derived from Fruit-Extracted Anthocyanins with Dynamic Disassembly and Elimination Abilities. ACS Nano, 2018, 12(8), 8255–8265. doi: 10.1021/acsnano.8b03525
  83. Tridgett, M.; Moore-Kelly, C.; Duprey, J.-L.H.A.; Iturbe, L.O.; Tsang, C.W.; Little, H.A.; Sandhu, S.K.; Hicks, M.R.; Dafforn, T.R.; Rodger, A. Linear dichroism of visible-region chromophores using M13 bacteriophage as an alignment scaffold. RSC Advances, 2018, 8(52), 29535–29543. doi: 10.1039/c8ra05475d
  84. Lin, P.-Y.; Chiu, Y.-L.; Huang, J.-H.; Chuang, E.-Y.; Mi, F.-L.; Lin, K.-J.; Juang, J.-H.; Sung, H.-W.; Leong, K.W. Oral Nonviral Gene Delivery for Chronic Protein Replacement Therapy. Advanced Science, 2018, 5(8), 1701079. doi: 10.1002/advs.201701079
  85. Barry, R.; John, S.W.; Liccardi, G.; Tenev, T.; Jaco, I.; Chen, C.-H.; Choi, J.; Kasperkiewicz, P.; Fernandes-Alnemri, T.; Alnemri, E.; Drag, M.; Chen, Y.; Meier, P. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nature Communications, 2018, 9, 3001. doi: 10.1038/s41467-018-05321-2
  86. Bonnard, T.; Jayapadman, A.; Putri, J.A.; Cui, J.; Ju, Y.; Carmichael, C.; Angelovich, T.A.; Cody, S.H.; French, S.; Pascaud, K.; Pearce, H.A.; Jagdale, S.; Caruso, F.; Hagemeyer, C.E. Low-Fouling and Biodegradable Protein-Based Particles for Thrombus Imaging. ACS Nano, 2018, 12(7), 6988–6996. doi: 10.1021/acsnano.8b02588
  87. Tovar-Herrera, O.E.; Rodríguez, M.; Olarte-Lozano, M.; Sampedro-Guerrero, J.A.; Guerrero, A.; Pinto-Cámara, R.; Alvarado-Affantranger, X.; Wood, C.D.; Moran-Mirabal, J.M.; Pastor, N.; Segovia, L.; Martínez-Anaya, C. Analysis of the Binding of Expansin Exl1, from Pectobacterium carotovorum, to Plant Xylem and Comparison to EXLX1 from Bacillus subtilis. ACS Omega, 2018, 3(6), 7008–7018. doi: 10.1021/acsomega.8b00406
  88. Patiño, T.; Feiner-Gracia, N.; Arqué, X.; Miguel-López, A.; Jannasch, A.; Stumpp, T.; Schäffer, E.; Albertazzi, L.; Sánchez, S. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors. Journal of the American Chemical Society, 2018, 140(25), 7896–7903. doi: 10.1021/jacs.8b03460
  89. Rho, J.Y.; Brendel, J.C.; MacFarlane, L.R.; Mansfield, E.D.H.; Peltier, R.; Rogers, S.; Hartlieb, M.; Perrier, S. Probing the Dynamic Nature of Self-Assembling Cyclic Peptide–Polymer Nanotubes in Solution and in Mammalian Cells. Advanced Functional Materials, 2018, 28(24), 1704569. doi: 10.1002/adfm.201704569
  90. Hu, H.; Wan, J.; Huang, X.; Tang, Y.; Xiao, C.; Xu, H.; Yang, X.; Li, Z. iRGD-decorated reduction-responsive nanoclusters for targeted drug delivery. Nanoscale, 2018, 10(22), 10514–10527. doi: 10.1039/c8nr02534g
  91. Porciani, D.; Cardwell, L.N.; Tawiah, K.d.; Alam, K.K.; Lange, M.J.; Daniels, M.A.; Burke, D.H. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines. Nature Communications, 2018, 9(1), 2283. doi: 10.1038/s41467-018-04691-x
  92. Kao, C.-W.; Wu, P.-T.; Liao, M.-Y.; Chung, I.-J.; Yang, K.-C.; Tseng, W.-Y.I. Yu, J. Magnetic Nanoparticles Conjugated with Peptides Derived from Monocyte Chemoattractant Protein-1 as a Tool for Targeting Atherosclerosis. Pharmaceutics, 2018, 10(2), 62. doi: 10.3390/pharmaceutics10020062
  93. Lee, K.; Zhang, L.; Yi, Y.; Wang, X.; Yu, Y. Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles. ACS Nano, 2018, 12(4), 3646–3657. doi: 10.1021/acsnano.8b00759
  94. Li, L.; Yang, J.; Wang, J.; Kopeček, J. Amplification of CD20 Cross-Linking in Rituximab-Resistant B-Lymphoma Cells Enhances Apoptosis Induction by Drug-Free Macromolecular Therapeutics. ACS Nano, 2018, 12(4), 3658–3670. doi: 10.1021/acsnano.8b00797
  95. Lee, A.; Kim, S.H.; Lee, H.; Kim, B.; Kim, Y.S.; Key, J. Visualization of MMP-2 Activity Using Dual-Probe Nanoparticles to Detect Potential Metastatic Cancer Cells. Nanomaterials, 2018, 8(2), 119. doi: 10.3390/nano8020119
  96. Poreba, M.; Rut, W.; Vizovisek, M.; Groborz, K.; Kasperkiewicz, P.; Finlay, D.; Vuori, K.; Turk, D.; Turk, B.; Salvesen, G.; Drag, M. Selective imaging of human cathepsin L in breast cancer by fluorescent activity-based probes. Chemical Science, 2018, 9(8), 2113–2129. doi: 10.1039/C7SC04303A
  97. Wang, Y.; Qiao, S.-L.; Wang, H. Facile Synthesis of Peptide-Crosslinked Nanogels for Tumor Metastasis Inhibition. ACS Applied Nano Materials, 2018, 1(2), 785–792. doi: 10.1021/acsanm.7b00203
  98. Cheng, T.; Zhang, Y.; Liu, J.; Ding, Y.; Ou, H.; Huang, F.; An, Y.; Liu, Y.; Liu, J.; Shi, L. Ligand-Switchable Micellar Nanocarriers for Prolonging Circulation Time and Enhancing Targeting Efficiency. ACS Applied Materials & Interfaces, 2018, 10(6), 5296–5304. doi: 10.1021/acsami.7b18137
  99. Jeschke, A.; Haas, A. Sequential actions of phosphatidylinositol phosphates regulate phagosome-lysosome fusion. Molecular Biology of the Cell, 2018, 29(4), 452–465. doi: 10.1091/mbc.E17-07-0464
  100. Li, L.; Yang, J.; Wang, J.; Kopeček, J. Drug-Free Macromolecular Therapeutics Induce Apoptosis via Calcium Influx and Mitochondrial Signaling Pathway. Macromolecular Bioscience, 2018, 1, 1700196. doi: 10.1002/mabi.201700196
  101. Wijnands, S.P.W.; Engelen, W.; Lafleur, R.P.M.; Meijer, E.W.; Merkx, M. Controlling protein activity by dynamic recruitment on a supramolecular polymer platform. Nature Communications, 2018, 9, 65. doi: 10.1038/s41467-017-02559-0
  102. Agrawalla, B.K.; Wang, T.; Riegger, A.; Domogalla, M.P.; Steinbrink, K.; Dörfler, T.; Chen, X.; Boldt, F.; Lamla, M.; Michaelis, J.; Kuan, S.L.; Weil, T. Chemoselective Dual and Triple Labelling of Native and Recombinant Proteins. Bioconjugate Chemistry, 2018, 29(1), 29–34. doi: 10.1021/acs.bioconjchem.7b00675
  103. Kim, H.; Shin, K.; Park, O.K.; Choi, D.; Kim, H.D.; Baik, S.; Lee, S.H.; Kwon, S.-H.; Yarema, K.J.; Hong, J.; Hyeon, T.; Hwang, N.S. General and Facile Coating of Single Cells via Mild Reduction. Journal of the American Chemical Society, 2018, 140(4), 1199–1202. doi: 10.1021/jacs.7b08440
  104. Ashcheulova, D.O.; Efimova, L.V.; Lushchyk, A.Y.; Yantsevich, A.V.; Baikov, A.N.; Pershina, A.G. Production of the recombinant antimicrobial peptide UBI18–35 in Escherichia coli. Protein Expression and Purification, 2018, 143, 38–44. doi: 10.1016/j.pep.2017.10.011
  105. Huang, Q.; Li, S.; Ding, Y.; Yin, H.; Wang, L.-H.; Wang, R. Macrocycle-Wrapped Polyethylenimine for Gene Delivery with Reduced Cytotoxicity. Biomaterials Science, 2018, 6(5), 1031–1039. doi: 10.1039/C8BM00022K
  106. Wang, C.; Niederstrasser, H.; Douglas, P.M.; Lin, R.; Jaramillo, J.; Li, Y.; Olswald, N.W.; Zhou, A.; McMillan, E.A.; Mendiratta, S.; Wang, Z.; Zhao, T.; Lin, Z.; Luo, M.; Huang, G.; Brekken, R.A.; Posner, B.A.; MacMillan, J.B.; Gao, J.; White, M.A. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nature Communications, 2017, 8, 2270. doi: 10.1038/s41467-017-02332-3
  107. Lee, N.K.; Lee, E.J.; Kim, S.; Nam, G.-H.; Kih, M.; Hong, Y.; Jeong, C.; Yang, Y.; Byun, Y.; Kim, I.-S. Ferritin nanocage with intrinsically disordered proteins and affibody: A platform for tumor targeting with extended pharmacokinetics. Journal of Controlled Release, 2017, 267, 172–180. doi: 10.1016/j.jconrel.2017.08.014
  108. Madl, C.M.; LeSavage, B.L.; Dewi, R.E.; Dinh, C.B.; Stowers, R.S.; Khariton, M.; Lampe, K.J.; Nguyen, D.; Chaudhuri, O.; Enejder, A.; Heilshorn, S.C. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nature Materials, 2017, 16(12), 1233–1242. doi: 10.1038/nmat5020
  109. Hu, H.; Xiao, C.; Wu, H.; Li, Y.; Zhou, Q.; Tang, Y.; Yu, C.; Yang, X.; Li, Z. Nanocolloidosomes with Selective Drug Release for Active Tumor-Targeted Imaging-Guided Photothermal/Chemo Combination Therapy. ACS Applied Materials & Interfaces, 2017, 9(48), 42225–42238. doi: 10.1021/acsami.7b14796
  110. Schäfer, O.; Klinker, K.; Braun, L.; Huesmann, D.; Schultze, J.; Koynov, K.; Barz, M. Combining Orthogonal Reactive Groups in Block Copolymers for Functional Nanoparticle Synthesis in a Single Step. ACS Macro Letters, 2017, 6(10), 1140–1145. doi: 10.1021/acsmacrolett.7b00678
  111. Steele, A.N.; Cai, L.; Truong, V.N.; Edwards, B.B.; Goldstone, A.B.; Eskandari, A.; Mitchell, A.C.; Marquardt, L.M.; Foster, A.A.; Cochran, J.R.; Heilshorn, S.C.; Woo, Y.J. A novel protein-engineered hepatocyte growth factor analog released via a shear-thinning injectable hydrogel enhances post-infarction ventricular function. Biotechnology and Bioengineering, 2017, 114(10), 2379–2389. doi: 10.1002/bit.26345
  112. Wang, F.; Sun, W.; Li, L.; Li, L.; Liu, Y.; Zhang, Z.; Huang, Y. Charge-reversible Multi-functional HPMA Copolymers for Mitochondrial Targeting. ACS Applied Materials & Interfaces, 2017, 9(33), 27563–27574. doi: 10.1021/acsami.7b09693
  113. Dou, Y.; Chen, Y.; Zhang, X.; Xu, X.; Chen, Y.; Guo, J.; Zhang, D.; Wang, R.; Li, X.; Zhang, J. Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis. Biomaterials, 2017, 143, 93–108. doi: 10.1016/j.biomaterials.2017.07.035
  114. Lin, P.-Y.; Chuang, E.-Y.; Chiu, Y.-H.; Chen, H.-L.; Lin, K.-J.; Juang, J.-H.; Chiang, C.-H.; Mi, F.-L.; Sung, H.-W. Safety and efficacy of self-assembling bubble carriers stabilized with sodium dodecyl sulfate for oral delivery of therapeutic proteins. Journal of Controlled Release, 2017, 259, 168–175. doi: 10.1016/j.jconrel.2016.12.018
  115. Bloch, M.B.D.; Yavin, E.; Nissan, A.; Ariel, I.; Kenett, R.; Brass, D.; Rubinstein, A. The effect of linker type and recognition peptide conjugation chemistry on tissue affinity and cytotoxicity of charged polyacrylamide. Journal of Controlled Release, 2017, 257, 102–117. doi: 10.1016/j.jconrel.2016.06.038
  116. Seeger, C.; Talibov, V.O.; Danielson, U.H. Biophysical analysis of the dynamics of calmodulin interactions with neurogranin and Ca2+/calmodulin-dependent kinase II. Journal of Molecular Recognition, 2017, 30(8), e2621. doi: 10.1002/jmr.2621
  117. Treerattrakoon, K., Chanthima, W.; Apiwat, C.; Dharakul, T.; Bamrungsap, S. Oriented conjugation of antibodies against~the epithelial cell adhesion molecule on fluorescently doped silica nanoparticles for flow-cytometric determination and in vivo imaging of EpCAM, a biomarker for colorectal cancer. Microchimica Acta, 2017, 184(7), 1941–1950. doi: 10.1007/s00604-017-2211-6
  118. Cho, C.-F.; Wolfe, J.M.; Fadzen, C.M.; Calligaris, D.; Hornburg, K.; Chiocca, E.A.; Agar, N.Y.R.; Pentelute, B.L.; Lawler, S.E. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nature Communications, 2017, 8, 15623. doi: 10.1038/ncomms15623
  119. Matsuo, Y.; Maurer, S.P.; Surrey, T.; Toda, T. Purification and characterisation of the fission yeast Ndc80 complex. Protein Expression and Purification, 2017, 135, 61–69. doi: 10.1016/j.pep.2017.05.002
  120. Baranova, N.; Loose, M. Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers. Methods in Cell Biology, 2017, 137, 355–370. doi: 10.1016/bs.mcb.2016.03.036
  121. Zhang, L.; Fang, Y.; Kopeček, J.; Yang, J. A new construct of antibody-drug conjugates for treatment of B-cell non-Hodgkin's lymphomas. European Journal of Pharmaceutical Sciences, 2017, 103, 36–46. doi: 10.1016/j.ejps.2017.02.034
  122. Brillault, L.; Jutras, P.V.; Dashti, N.; Thuenemann, E.C.; Morgan, G.; Lomonossoff, G.P.; Landsberg, M.J.; Sainsbury, F. Engineering Recombinant Virus-like Nanoparticles from Plants for Cellular Delivery. ACS Nano, 2017, 11(4), 3476–3484. doi: 10.1021/acsnano.6b07747
  123. Taskova, M.; Uhd, J.; Miotke, L.; Kubit, M.; Bell, J.; Ji, H.P.; Astakhova, K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Analytical Chemistry, 2017, 89(8), 4363–4366. doi: 10.1021/acs.analchem.7b00646
  124. Zhou, H.; Tourkakis, G.; Shi, D.; Kim, D.M.; Zhang, H.; Du, T.; Eades, W.C.; Berezin, M.Y. Cell-free measurements of brightness of fluorescently labeled antibodies. Scientific Reports, 2017, 7, 41819. doi: 10.1038/srep41819
  125. Mottas, I.; Milosevic, A.; Petri-Fink, A.; Rothen-Rutishauser, B.; Bourquin, C. A rapid screening method to evaluate the impact of nanoparticles on macrophages. Nanoscale, 2017, 9(7), 2492–2504. doi: 10.1039/c6nr08194k
  126. Stephen, Z.R.; Gebhart, R.N.; Jeon, M.; Blair, A.A.; Ellenbogen, R.G.; Silber, J.R.; Zhang, M. pH-Sensitive O6-Benzylguanosine Polymer Modified Magnetic Nanoparticles for Treatment of Glioblastomas. Bioconjugate Chemistry, 2017, 28(1), 194–202. doi: 10.1021/acs.bioconjchem.6b00545
  127. Jang, D.; Lee, Y.M.; Lee, J.; Doh, J.; Kim, W.J. Remission of lymphoblastic leukaemia in an intravascular fluidic environment by pliable drug carrier with a sliding target ligand. Scientific Reports, 2017, 7, 40739. doi: 10.1038/srep40739
  128. O'Connell, C.L.; Nooney, R.; McDonagh, C. Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy. Biosensors and Bioelectronics, 2017, 91, 190–198. doi: 10.1016/j.bios.2016.12.023
  129. Li, L.; Sun, W.; Li, L.; Liu, Y.; Wu, L.; Wang, F.; Zhou, Z.; Zhang, Z.; Huang, Y. A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting. Nanoscale, 2017, 9(1), 314–325. doi: 10.1039/c6nr07004c
  130. Bus, T.; Englert, C.; Reifarth, M.; Borchers, P.; Hartlieb, M.; Vollrath, A.; Hoeppener, S.; Traeger, A.; Schubert, U.S. 3rd generation poly(ethylene imine)s for gene delivery. Journal of Materials Chemistry B, 2017, 5(6), 1258–1274. doi: 10.1039/C6TB02592G
  131. Lu, K.-Y.; Li, R.; Hsu, C.-H.; Lin, C.-W.; Chou, S.-C.; Tsai, M.-L.; Mi, F.-L. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydrate Polymers, 2017, 165, 410–420. doi: 10.1016/j.carbpol.2017.02.065
  132. Taneja, N.; Zofall, M.; Balachandran, V.; Thillainadesan, G.; Sugiyama, T.; Wheeler, D.; Zhou, M.; Grewal, S.I.S. SNF2 Family Protein Fft3 Suppresses Nucleosome Turnover to Promote Epigenetic Inheritance and Proper Replication. Molecular Cell, 2017, 66(1), 50–62. doi: 10.1016/j.molcel.2017.02.006
  133. Lunde, N.N.; Haugen, M.H.; Larsen, K.B.B.; Damgaard, I.; Pettersen, S.J.; Kasem, R.; Rut, W.; Drag, M.; Poreba, M.; Johansen, Harald T.; Solberg, R. Glycosylation is important for legumain localization and processing to active forms but not for cystatin E/M inhibitory functions. Biochimie, 2017, 139, 27–37. doi: 10.1016/j.biochi.2017.05.009
  134. Westergaard Mulberg, M.; Taskova, M.; Thomsen, R.P.; Okholm, A.H.; Kjems, J.; Astakhova, K. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods. Chembiochem, 2017, 18(16), 1599–1603. doi: 10.1002/cbic.201700125
  135. Yang, W.; Xia, Y.; Zou, Y.; Meng, F.; Zhang, J.; Zhong, Z. Bioresponsive Chimaeric Nano-polymersomes Enable Targeted and Efficacious Protein Therapy for Human Lung Cancers in Vivo. Chemistry of Materials, 2017, 29(20), 8757–8765. doi: 10.1021/acs.chemmater.7b02953
  136. Gilbert, T.; Alsop, R.J.; Babi, M.; Moran-Mirabal, J.; Rheinstadter, M.C.; Hoare, T. Nanostructure of Fully Injectable Hydrazone-Thiosuccinimide Interpenetrating Polymer Network Hydrogels Assessed by Small-Angle Neutron Scattering and dSTORM Single-Molecule Fluorescence Microscopy. ACS Applied Materials & Interfaces, 2017, 9(48), 42179–42191. doi: 10.1021/acsami.7b11637
  137. Mendler, C.T.; Feuchtinger, A.; Heid, I.; Aichler, M.; D'Alessandria, C.; Pirsig, S.; Blechert, B.; Wester, H.-J.; Braren, R.; Walch, A.; Skerra, A.; Schwaiger, M. Tumor uptake of anti-CD20 Fabs depends on tumor perfusion. Journal of Nuclear Medicine, 2016, 57(12), 1971–1977. doi: 10.2967/jnumed.116.176784
  138. Li, Y.; Zhao, Q.; Wang, Y.; Man, T.; Zhou, L.; Fang, X.; Pei, H.; Chi, L.; Liu, J. Ultrasensitive Signal-on Detection of Nucleic Acids with Surface-Enhanced Raman Scattering and Exonuclease III Assisted Probe Amplification. Analytical Chemistry, 2016, 88(23), 11684–11690. doi: 10.1021/acs.analchem.6b03267
  139. Xu, X.; Xu, Z.; Liu, J.; Zhang, Z.; Chen, H.; Li, X.; Shi, S. Visual tracing of diffusion and biodistribution for amphiphilic cationic nanoparticles using photoacoustic imaging after ex vivo intravitreal injections. International Journal of Nanomedicine, 2016, 11, 5079–5086. doi: 10.2147/IJN.S109986
  140. Cheng, J.; Feng, S.; Han, S.; Zhang, X.; Chen, Y.; Zhou, X.; Wang, R.; Li, X.; Hu, H.; Zhang, J. Facile Assembly of Cost-Effective and Locally Applicable or Injectable Nanohemostats for Hemorrhage Control. ACS Nano, 2016, 10(11), 9957&ndash9973. doi: 10.1021/acsnano.6b04124
  141. Xiao, F.; Li, G.; Wu, Y.; Chen, Q.; Wu, Z.; Yu, R. Label-Free Photonic Crystal-Based β-Lactamase Biosensor for β-Lactam Antibiotic and β-Lactamase Inhibitor. Analytical Chemistry, 2016, 88(18), 9207–9212. doi: 10.1021/acs.analchem.6b02457
  142. Zhang, Q.; Tao, H.; Lin, Y.; Hu, Y.; An, H.; Zhang, D.; Feng, S.; Hu, H.; Wang, R.; Li, X.; Zhang, J. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials, 2016, 105, 206–221. doi: 10.1016/j.biomaterials.2016.08.010
  143. Feng, S.; Hu, Y.; Peng, S.; Han, S.; Tao, H.; Zhang, Q.; Xu, X.; Zhang, J.; Hu, H. Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials, 2016, 105, 167–184. doi: 10.1016/j.biomaterials.2016.08.003
  144. Chen, K.; Chen, Q.; Wang, K.; Zhu, J.; Li, W.; Li, W.; Qiu, L.; Guan, G.; Qiao, M.; Zhao, X.; Hu, H.; Chen, D. Synthesis and characterization of a PAMAM-OH derivative containing an acid-labile β-thiopropionate bond for gene delivery. International Journal of Pharmaceutics, 2016, 509(1–2), 314–327. doi: 10.1016/j.ijpharm.2016.05.060
  145. Wu, F.; Liu, C.; Chen, Y.; Yang, S.; Xu, J.; Huang, R.; Wang, X.; Li, M.; Liu, W.; Mao, W.; Zhou, X. Visualization of G-quadruplexes in gel and in live cells by a near-infrared fluorescent probe. Sensors and Actuators B: Chemical, 2016, 236, 268–275. doi: 10.1016/j.snb.2016.05.162
  146. Wilkinson, N.; Metaxas, A.; Ruud, E.; Raethke, E.; Wickramaratne, S.; Reineke, T.M.; Dutcher, C.S. Internal structure visualization of polymer – clay flocculants using fluorescence. Colloids and Interface Science Communications, 2016, 10–11, 1–5. doi: 10.1016/j.colcom.2016.03.002
  147. Ray, J.; Shin, I.; Ilgu, M.; Bendickson, L.; Gupta, V.; Kraus, G.A.; Nilsen-Hamilton, M. IMAGEtags: Quantifying mRNA Transcription in Real Time with Multiaptamer Reporters. Methods in Enzymology, 2016, 572, 193–213. doi: 10.1016/bs.mie.2016.02.028
  148. Hartley, J.M.; Zhang, R.; Gudheti, M.; Yang, J.; Kopeček, J. Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM. Journal of Controlled Release, 2016, 231, 50–59. doi: 10.1016/j.jconrel.2016.02.005
  149. Xu, X.; Li, L.; Zhou, Z.; Sun, W.; Huang, Y. Dual-pH responsive micelle platform for co-delivery of axitinib and doxorubicin. International Journal of Pharmaceutics, 2016, 507(1–2), 50–60. doi: 10.1016/j.ijpharm.2016.04.060
  150. Tran, T.-H.; Krishnan, S.; Amiji, M.M. MicroRNA-223 Induced Repolarization of Peritoneal Macrophages Using CD44 Targeting Hyaluronic Acid Nanoparticles for Anti-Inflammatory Effects. PLoS One, 2016, 11(5), e0152024. doi: 10.1371/journal.pone.0152024
  151. Liu, C.; Stonestrom, A.J.; Christian, T.; Yong, J.; Takase, R.; Hou, Y.-M.; Yang, X. Molecular Basis and Consequences of the Cytochrome c-tRNA Interaction. Journal of Biological Chemistry, 2016, 291(19), 10426–10436. doi: 10.1074/jbc.M115.697789
  152. Li, L.; Sun, W.; Zhang, Z.; Huang, Y. Time-staggered delivery of docetaxel and H1S6A,F8A peptide for sequential dual-strike chemotherapy through tumor priming and nuclear targeting. Journal of Controlled Release, 2016, 232, 62–74. doi: 10.1016/j.jconrel.2016.04.021
  153. Leenders, J.; Baker, M.B.; Pijpers, I.; Lafleur, R.; Albertazzi, L.; Palmans, A.R.A.; Meijer, E.W. Supramolecular polymerisation in water; elucidating the role of hydrophobic and hydrogen-bond interactions. Soft Matter, 2016, 12, 2887–2893. doi: 10.1039/c5sm02843d
  154. Liu, X.; Zhang, P.; He, D:; Rödl, W.; Preiß, T.; Rädler, J.O.; Wagner, E.; Lächelt, U. pH-reversible cationic RNase A conjugates for enhanced cellular delivery and tumor cell killing. Biomacromolecules, 2016, 17(1), 173–182. doi: 10.1021/acs.biomac.5b01289
  155. Schelpe, J.; Monté, D.; Dewitte, F.; Sixma, T.K.; Rucktooa, P. Structure of UBE2Z Enzyme Provides Functional Insight into Specificity in the FAT10 Protein Conjugation Machinery. Journal of Biological Chemistry, 2016, 291(2), 630–639. doi: 10.1074/jbc.M115.671545
  156. He, H.; Altomare, D.; Ozer, U.; Xu, H.; Creek, K.; Chen, H.; Xu, P. Cancer cell-selective killing polymer/copper combination. Biomaterials Science, 2016, 4(1), 115–120. doi: 10.1039/c5bm00325c
  157. van der Velde, J.H.M.; Oelerich, J.; Huang, J.; Smit, J.H.; Aminian Jazi, A.; Galiani, S.; Kolmakov, K.; Guoridis, G.; Eggeling, C.; Herrmann, A.; Roelfes, G.; Cordes, T. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nature Communications, 2016, 7, 10144. doi: 10.1038/ncomms10144
  158. Poolman, J.; Maity, C.; Boekhoven, J.; van der Mee, L.; le Sage, V.; Groenewold, M.; van Kasteren, S.; Versluis, F.; van Esch, J.; Eelkema, R. A toolbox for controlling the properties and functionalisation of hydrazone-based supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 852–858. doi: 10.1039/C5TB01870F
  159. Stephen, Z.; Dayringer, C.; Lim, J.; Revia, R.; Halbert, M.; Jeon, M.; Bakthavatsalam, A.; Ellenbogen, R.G.; Zhang, M. An Approach to Rapid Synthesis and Functionalization of Iron Oxide Nanoparticles for High Gene Transfection. ACS Applied Materials & Interfaces, 2016, 8(10), 6320–6328. doi: 10.1021/acsami.5b10883
  160. Horning, D.P.; Joyce, G.F. Amplification of RNA by an RNA polymerase ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35), 9786–9791. doi: 10.1073/pnas.1610103113
  161. Matsuo, Y.; Maurer, S.P.; Yukawa, M.; Zakian, S.; Singleton, M.R.; Surrey, T.; Toda, T. An unconventional interaction between Dis1/TOG and Mal3/EB1 promotes the fidelity of chromosome segregation. Journal of Cell Science, 2016, 129(24), 4592–4606. doi: 10.1242/jcs.197533
  162. Zhang, Rui and Yang, Jiyuan and Chu, Te-Wei and Hartley, Jonathan M. and Kopeček, Jindřich. Multimodality Imaging of Coiled-Coil Mediated Self-Assembly in a "Drug-Free" Therapeutic System. Advanced Healthcare Materials, 2015, 4(7), 1054–1065. doi: 10.1002/adhm.201400679
  163. Evans, L.E.; Cheeseman, M.D.; Yahya, N.; Jones, K. Investigating Apoptozole as a Chemical Probe for HSP70 Inhibition. PLoS One, 2015, 10(10), e0140006. doi: 10.1371/journal.pone.0140006
  164. Chu, D.; Gao, J.; Wang, Z. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection. ACS Nano, 2015, 9(12), 11800–11811. doi: 10.1021/acsnano.5b05583
  165. Albertazzi, L.; van der Veeken, N.; Baker, M.B.; Palmans, A.R.A.; Meijer, E.W. Supramolecular copolymers with stimuli-responsive sequence control. Chemical Communications, 2015, 51(90), 16166–16168. doi: 10.1039/c5cc06951c
  166. Yang, J.; Zhang, R.; Radford, D.C.; Kopeček, J. FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. Journal of Controlled Release, 2015, 218, 36–44. doi: 10.1016/j.jconrel.2015.09.045
  167. Wang, C.; Wang, Y.; Li, Y.; Bodemann, B.; Zhao, T.; Ma, X.; Huang, G.; Hu, Z.; DeBerardinis, R.J.; White, M.A.; Gao, J. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nature Communications, 2015, 6, 8524. doi: 10.1038/ncomms9524
  168. Vanparijs, N.; De Coen, R.; Laplace, D.R.; Louage, B.; Maji, S.; Lybaert, L.; Hoogenboom, R.; De Geest, B. Transiently responsive protein-polymer conjugates via a grafting-from RAFT approach: for intracellular co-delivery of proteins and immune-modulators. Chemical Communications, 2015, 51, 13972–13975. doi: 10.1039/c5cc04809e
  169. Klykov, O.; Weller, M.G. Quantification of N-hydroxysuccinimide and N-hydroxysulfosuccinimide by hydrophilic interaction chromatography (HILIC). Analytical Methods, 2015, 7, 6443–6448. doi: 10.1039/c5ay00042d
  170. Shi, Q.; Zhang, L.; Liu, M.; Zhang, X.; Zhang, X.; Xu, X.; Chen, S.; Li, X.; Zhang, J. Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells. Biomaterials, 2015, 67, 169–182. doi: 10.1016/j.biomaterials.2015.07.023
  171. Chen, L.; An, H.; Doyle, P.S. Synthesis of non-spherical microcapsules through controlled polyelectrolyte coating of hydrogel templates. Langmuir, 2015, 31(33), 9228–9235. doi: 10.1021/acs.langmuir.5b02200
  172. Li, L.; Sun, W.; Zhong, J.; Yang, Qi.; Zhu, X.; Zhou, Z.; Zhang Z.; Huang, Y. Multistage Nanovehicle Delivery System Based on Stepwise Size Reduction and Charge Reversal for Programmed Nuclear Targeting of Systemically Administered Anticancer Drugs. Advanced Functional Materials, 2015, 25(26), 4101–4113. doi: 10.1002/adfm.201501248
  173. Baker, Matthew B. and Albertazzi, Lorenzo and Voets, Ilja K. and Leenders, Christianus M.A. and Palmans, Anja R.A. and Pavan, Giovanni M. and Meijer, E.W. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer. Nature Communications, 2015, 6, 6234. doi: 10.1038/ncomms7234
  174. Unciti-Broceta, J.D.; Cano-Cortés, V.; Altea-Manzano, P.; Pernagallo, S.; Díaz-Mochón, J.J.; Sánchez-Martín, R.M. Number of Nanoparticles per Cell through a Spectrophotometric Method – A key parameter to Assess Nanoparticle-based Cellular Assays. Scientific Reports, 2015, 5, 10091. doi: 10.1038/srep10091
  175. Medina, S.H.; Schneider, J.P. Cancer cell surface induced peptide folding allows intracellular translocation of drug. Journal of Controlled Release, 2015, 209, 317–326. doi: 10.1016/j.jconrel.2015.05.267
  176. Pereira, P.M.; Almada, P.; Henriques, R. High-content 3D multicolor super-resolution localization microscopy. Methods in Cell Biology, 2015, 125, 95–117. doi: 10.1016/bs.mcb.2014.10.004
  177. Chiang, W.-L.; Lin, T.-T.; Sureshbabu, R.; Chia, W.-T.; Hsiao, H.-C.; Liu, H.-Y.; Yang, C.-M.; Sung, H.-W. A rapid drug release system with a NIR light-activated molecular switch for dual-modality photothermal/antibiotic treatments of subcutaneous abscesses. Journal of Controlled Release, 2015, 199, 53–62. doi: 10.1016/j.jconrel.2014.12.011
  178. Geertsema, H.J.; Duderstadt, K.E.; van Oijen, A.M. Single-molecule observation of prokaryotic DNA replication. Methods in Molecular Biology, 2015, 1300, 219–238. doi: 10.1007/978-1-4939-2596-4_14
  179. Nooney, R.; O’Connell, C.; Roy, S.; Boland, K.; Keegan, G.; Kelleher, S.; Daniels, S.; McDonagh, C. Synthesis and characterisation of far-red fluorescent cyanine dye doped silica nanoparticles using a modified microemulsion method for application in bioassays. Sensors and Actuators B: Chemical, 2015, 221, 470–479. doi: 10.1016/j.snb.2015.06.117
  180. Zhang, Z.; Kenny, S.J.; Hauser, M.; Li, W.; Xu, K. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Nature Methods, 2015, 12(10), 935–938. doi: 10.1038/nmeth.3528
  181. Chen, K.; Xu, X.; Guo, J.W.; Zhang, X.; Han, S.; Wang, R.; Li, X.; Zhang, J. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry. Biomacromolecules, 2015, 16(11), 3574–3583. doi: 10.1021/acs.biomac.5b01056
  182. Dogandzhiyski, P.; Ghidini, A.; Danneberg, F.; Strömberg, R.; Göbel, M.W. Studies on Tris(2-aminobenzimidazole)-PNA Based Artificial Nucleases: A Comparison of Two Analytical Techniques. Bioconjugate Chemistry, 2015, 26(12), 2514–2519. doi: 10.1021/acs.bioconjchem.5b00534
  183. Bird, G.H., Boyapalle, S.; Wong, T.; Opoku-Nsiah, K.; Bedi, R.; Crannell, W.C.; Perry, A.F.; Nguyen, H.; Sampayo, V.; Devareddy, A.; Mohapatra, S.; Mohapatra S.S.; Walensky, L.D. Mucosal delivery of a double-stapled {RS}V peptide prevents nasopulmonary infection. Journal of Clinical Investigation, 2014, 124(5), 2113–2124. doi: 10.1172/jci71856
  184. Basu, R.; Lai, L.-T.; Meng, Z.; Wu, J.; Shao, F.; Zhang, L.-F. Using Amino-Labeled Nucleotide Probes for Simultaneous Single Molecule RNA-DNA FISH. PLoS ONE, 2014, 9(9), e107425. doi: 10.1371/journal.pone.0107425
  185. Bříza, T.; Rimpelová, S.; Králová, J.; Záruba, K.; Kejík, Z.; Ruml, T.; Martásek, P.; Král, V. Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization. Dyes and Pigments, 2014, 107, 51-59. doi: 10.1016/j.dyepig.2013.12.021
  186. Bamrungsap, S.; Apiwat, C.; Chantima, W.; Dharakul, T.; Wiriyachaiporn, N. Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchimica Acta, 2014, 181(1–2), 223-230. doi: 10.1007/s00604-013-1106-4
  187. Duellberg, C.; Trokter, M.; Jha, R.; Sen, I.; Steinmetz, M.O.; Surrey, T. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nature Cell Biology, 2014, 16(8), 804-811. doi: 10.1038/ncb2999
  188. Geertsema, H.J.; Kulczyk, A.W.; Richardson, C.C.; van Oijen, A.M. Single-molecule studies of polymerase dynamics and stoichiometry at the bacteriophage T7 replication machinery. Proceedings of the National Academy of Sciences of the U.S.A., 2014, 111(11), 4073-4078. doi: 10.1073/pnas.1402010111
  189. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  190. Hu, X.; Wang, Q.; Liu, Y.; Liu, H.; Qin, C.; Cheng, K.; Robinson, W.; Gray, B.D.; Pak, K.Y.; Yu, A. et al. Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes. Biomaterials, 2014, 35(26), 7511-7521. doi: 10.1016/j.biomaterials.2014.05.042
  191. Novo, L.; Rizzo, L.Y.; Golombek, S.K.; Dakwar, G.R.; Lou, B.; Remaut, K.; Mastrobattista, E.; van Nostrum, C.F.; Jahnen-Dechent, W.; Kiessling, F. et al. Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. Journal of Controlled Release, 2014, 195, 162-175. doi: 10.1016/j.jconrel.2014.08.028
  192. Zhang, Y.; Ge, C.; Zhu, C.; Salaita, K. DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nature Communications, 2014, 5, 5167-5167. doi: 10.1038/ncomms6167
  193. Chen, H.; Xiao, L.; Anraku, Y.; Mi, P.; Liu, X.; Cabral, H.; Inoue, A.; Nomoto, T.; Kishimura, A.; Nishiyama, N. et al. Polyion Complex Vesicles for Photoinduced Intracellular Delivery of Amphiphilic Photosensitizer. Journal of the American Chemical Society, 2014, 136(1), 157-163. doi: 10.1021/ja406992w
  194. Lee, S.; Ashizawa, A.T.; Kim, K.S.; Falk, D.J.; Notterpek, L. Liposomes to Target Peripheral Neurons and Schwann Cells. PLoS ONE, 2013, 8(11), e78724. doi: 10.1371/journal.pone.0078724
  195. Albertazzi, L.; Martinez-Veracoechea, F.J.; Leenders, C.M.A.; Voets, I.K.; Frenkel, D.; Meijer, E.W. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(30), 12203-12208. doi: 10.1073/pnas.1303109110
  196. Cheng, M.-C.; Leske, A.T.; Matsuoka, T.; Kim, B.C.; Lee, J.; Burns, M.A.; Takayama, S.; Biteen, J.S. Super-Resolution Imaging of PDMS Nanochannels by Single-Molecule Micelle-Assisted Blink Microscopy. The Journal of Physical Chemistry B, 2013, 117(16), 4406-4411. doi: 10.1021/jp307635v
  197. Haller, A.; Altman, R.B.; Souliere, M.F.; Blanchard, S.C.; Micura, R. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(11), 4188-4193. doi: 10.1073/pnas.1218062110
  198. He, H.; Chen, S.; Zhou, J.; Dou, Y.; Song, L.; Che, L.; Zhou, X.; Chen, X.; Jia, Y.; Zhang, J. et al. Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials, 2013, 34(21), 5344-5358. doi: 10.1016/j.biomaterials.2013.03.068
  199. Rimpelová, S.; Bříza, T.; Králová, J.; Záruba, K.; Kejík, Z.; Císařová, I.; Martásek, P.; Ruml, T.; Král, V. Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjugate Chemistry, 2013, 24(9), 1445-1454. doi: 10.1021/bc400291f
  200. Soulière, M.F.; Altman, R.B.; Schwarz, V.; Haller, A.; Blanchard, S.C.; Micura, R. Tuning a riboswitch response through structural extension of a pseudoknot. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(35), E3256-E3264. doi: 10.1073/pnas.1304585110
  201. Yang, H.; Mao, H.; Wan, Z.; Zhu, A.; Guo, M.; Li, Y.; Li, X.; Wan, J.; Yang, X.; Shuai, X. et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials, 2013, 34(36), 9124-9133. doi: 10.1016/j.biomaterials.2013.08.022
  202. Pecqueur, L.; Duellberg, C.; Dreier, B.; Jiang, Q.; Wang, C.; Pluckthun, A.; Surrey, T.; Gigant, B.; Knossow, M. A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Proceedings of the National Academy of Sciences of the U.S.A., 2012, 109(30), 12011-12016. doi: 10.1073/pnas.1204129109
  203. Sparks, J.; Slobodkin, G.; Matar, M.; Congo, R.; Ulkoski, D.; Rea-Ramsey, A.; Pence, C.; Rice, J.; McClure, D.; Polach, K.J. et al. Versatile cationic lipids for siRNA delivery. Journal of Controlled Release, 2012, 158(2), 269-276. doi: 10.1016/j.jconrel.2011.11.006

Cyanine5 NHS ester minimal dye

  1. Tamošiūnė, I.; Gelvonauskienė, D.; Haimi, P.; Mildažienė, V.; Koga, K.; Shiratani, M.; Baniulis, D. Cold Plasma Treatment of Sunflower Seeds Modulates Plant-Associated Microbiome and Stimulates Root and Lateral Organ Growth. Frontiers in Plant Science, 2020, 11, 568924. doi: 10.3389/fpls.2020.568924
  2. Mindubaev, A.Z.; Kuznetsova, S.V.; Evtyugin, V.G.; Daminova, A.G.; Grigoryeva, T.V.; Romanova, Y.D.; Romanova, V.A.; Babaev, V.M.; Buzyurova, D.N.; Babynin, E.V.; Badeeva, E.K.; Minzanova, S.T.; Mironova, L.G. Effect of White Phosphorus on the Survival, Cellular Morphology, and Proteome of Aspergillus niger. Applied Biochemistry and Microbiology, 2020, 56(2), 194–201. doi: 10.1134/S0003683820020118
  3. Romanova, Y.; Laikov, A.; Markelova, M.; Khadiullina, R.; Makseev, A.; Hasanova, M.; Rizvanov, A.; Khaiboullina, S.; Salafutdinov, I. Proteomic Analysis of Human Serum from Patients with Chronic Kidney Disease. Biomolecules, 2020, 10(2), 257. doi: 10.3390/biom10020257
  4. Baniulis, D.; Sirgėdienė, M.; Haimi, P.; Tamošiūnė, I.; Danusevičius, D. Constitutive and Cold Acclimation-Regulated Protein Expression Profiles of Scots Pine Seedlings Reveal Potential for Adaptive Capacity of Geographically Distant Populations. Forests, 2020, 11(1), 89. doi: 10.3390/f11010089
  5. Kirectepe Aydin, A.; Özgüler, Y.; Uçar, D.; Kasap, M.; Akpınar, G.; Seyahi, E.; Tahir Turanli, E. Peripheral blood mononuclear cell proteome profile in Behçet's syndrome. Rheumatology International, 2020, 40(1), 65–74. doi: 10.1007/s00296-019-04417-2
  6. Dietl, A.; Winkel, I.; Pietrzyk, G.; Paulus, M.; Bruckmann, A.; Schröder, J.A.; Sossalla, S.; Luchner, A.; Maier, L.S.; Birner, C. Skeletal muscle alterations in tachycardia-induced heart failure are linked to deficient natriuretic peptide signalling and are attenuated by RAS-/NEP-inhibition. PloS One, 2019, 14, e0225937. doi: 10.1371/journal.pone.0225937
  7. Sergeant, K.; Printz, B.; Guerriero, G.; Renaut, J.; Lutts, S.; Hausman, J.-F. The Dynamics of the Cell Wall Proteome of Developing Alfalfa Stems. Biology, 2019, 8(3), 60. doi: 10.3390/biology8030060
  8. Skubalova, Z.; Michalkova, H.; Michalek, P.; Strmiska, V.; Guran, R.; Rodrigo, M.A.M.; Castkova, K.; Hynek, D.; Pekarik, V.; Zitka, O.; Adam, V.; Heger, Z. Prevalent Anatase Crystalline Phase Increases the Cytotoxicity of Biphasic Titanium Dioxide Nanoparticles in Mammalian Cells. Colloids and Surfaces, B: Biointerfaces, 2019, 182, 110391. doi: 10.1016/j.colsurfb.2019.110391
  9. Mildažienė, Vida and Aleknavičiūtė, V.; Žūkienė, R.; Paužaitė, G.; Naučienė, Z.; Filatova, I.; Lyushkevich, V.; Haimi, P.; Tamošiūnė, I.; Baniulis, D. Treatment of Common Sunflower (Helianthus annus L.) Seeds with Radio-frequency Electromagnetic Field and Cold Plasma Induces Changes in Seed Phytohormone Balance, Seedling Development and Leaf Protein Expression. Scientific Reports, 2019, 9, 6437. doi: 10.1038/s41598-019-42893-5
  10. Simon, Á.; Gulyás, G.; Mészár, Z.; Bhide, M.; Oláh, J.; Bai, P.; Csősz, É.; Jávor, A.; Komlósi, I.; Remenyik, J.; Czeglédi, L. Proteomics alterations in chicken jejunum caused by 24 h fasting. PeerJ, 2019, 7, e6588. doi: 10.7717/peerj.6588
  11. Laberge, A.; Ayoub, A.; Arif, S.; Larochelle, S.; Garnier, A.; Moulin, V.J. α-2-Macroglobulin induces the shedding of microvesicles from cutaneous wound myofibroblasts. Journal of Cellular Physiology, 2019, 234(7), 11369–11379. doi: 10.1002/jcp.27794
  12. Malheiros, J.M.; Braga, C.P.; Grove, R.A.; Ribeiro, F.A.; Calkins, C.R.; Adamec, J.; Chardulo, L.A.L. Influence of oxidative damage to proteins on meat tenderness using a proteomics approach. Meat Science, 2019, 148, 64–71. doi: 10.1016/j.meatsci.2018.08.016
  13. Jin, Y.N.; Schlueter, P.J.; Jurisch-Yaksi, N.; Lam, P.-Y.; Jin, S.; Hwang, W.Y.; Yeh, J.-R.J.; Yoshigi, M.; Ong, S.-E.; Schenone, M.; Hartigan, C.R.; Carr, S.A.; Peterson, R.T. Noncanonical translation via deadenylated 3' UTRs maintains primordial germ cells. Nature Chemical Biology, 2018, 14(9), 844–852. doi: 10.1038/s41589-018-0098-0
  14. Lu, J.; Tang, M.; Liu, Y.; Wang, J.; Wu, Z. Comparative Proteomics of Chromium-Transformed Beas-2B Cells by 2D-DIGE and MALDI-TOF/TOF MS. Biological Trace Element Research, 2018, 185(1), 78–88. doi: 10.1007/s12011-017-1222-9
  15. Tamošiūnė, I.; Stanienė, G.; Haimi, P.; Stanys, V.; Rugienius, R.; Baniulis, D. Endophytic Bacillus and Pseudomonas spp. Modulate Apple Shoot Growth, Cellular Redox Balance, and Protein Expression Under in Vitro Conditions. Frontiers in Plant Science, 2018, 9, 889. doi: 10.3389/fpls.2018.00889
  16. Tsikandelova, R.; Mladenov, P.; Planchon, S.; Kalenderova, S.; Praskova, M.; Mihaylova, Z.; Stanimirov, P.; Mitev, V.; Renaut, J.; Ishkitiev, N. Proteome response of dental pulp cells to exogenous FGF8. Journal of Proteomics, 2018, 183, 14–24. doi: 10.1016/j.jprot.2018.05.004
  17. Jun, D.; Minic, Z.; Bhat, S.V.; Vanderlinde, E.M.; Yost, C.K.; Babu, M.; Dahms, T.E.S. Metabolic Adaptation of a C-Terminal Protease A-Deficient Rhizobium leguminosarum in Response to Loss of Nutrient Transport. Frontiers in Microbiology, 2018, 8, 2617. doi: 10.3389/fmicb.2017.02617
  18. Shields, K.J.; Wu, C. Differential Adipose Tissue Proteomics. Methods in Molecular Biology, 2017, 1788, 243–250. doi: 10.1007/7651_2017_80
  19. Zhao, P.; George, J.V.; Li, B.; Amini, N.; Paluh, J.; Wang, J. Clickable Multifunctional Dumbbell Particles for In Situ Multiplex Single-Cell Cytokine Detection. ACS Applied Materials & Interfaces, 2017, 9(38), 32482–32488. doi: 10.1021/acsami.7b08338
  20. Haimi, P.; Vinskiene, J.; Stepulaitiene, I.; Baniulis, D.; Stanienė, G.; Šikšnianienė, J.B.; Rugienius, R. Patterns of low temperature-Induced accumulation of dehydrins in Rosaceae crops — Evidence for post-translational modification in apple. Journal of Plant Physiology, 2017, 218, 175–181. doi: 10.1016/j.jplph.2017.08.008
  21. Merjaneh, M.; Langlois, A.; Larochelle, S.; Cloutier, C.B.; Ricard-Blum, S.; Moulin, V.J. Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts. Angiogenesis, 2017, 20(3), 385–398. doi: 10.1007/s10456-017-9554-9
  22. Sikorskaite-Gudziuniene, S.; Haimi, P.; Gelvonauskiene, D.; Stanys, V. Nuclear proteome analysis of apple cultivar ‘Antonovka’ accessions in response to apple scab (Venturia inaequalis). European Journal of Plant Pathology, 2017, 148(4), 771–784. doi: 10.1007/s10658-016-1131-3
  23. Heller, D.; Helmerhorst, E.J.; Oppenheim, F.G. Saliva and Serum Protein Exchange at the Tooth Enamel Surface. Journal of Dental Research, 2017, 96(4), 437–443. doi: 10.1177/0022034516680771
  24. Bian, Y.; Deng, X.; Yan, X.; Zhou, J.; Yuan, L.; Yan, Y. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Scientific Reports, 2017, 7, 46183. doi: 10.1038/srep46183
  25. Kaux JF, Libertiaux V, Leprince P, Fillet M, Denoel V Wyss C, Lecut C, Gothot A, Le Goff C, Croisier JL, Crielaard JM, Drion P. Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model. The American Journal of Sports Medicine, 2017, 45(6), 1440–1446. doi: 10.1177/0363546517689872
  26. Nemethova, M.; Talian, I.; Danielisova, V.; Tkacikova, S.; Bonova, P.; Bober, P.; Matiasova, M.; Sabo, J.; Burda, J. Delayed bradykinin postconditioning modulates intrinsic neuroprotective enzyme expression in the rat CA1 region after cerebral ischemia: a proteomic study. Metabolic Brain Disease, 2016, 31(6), 1391–1403. doi: 10.1007/s11011-016-9859-1
  27. Boone, C.; Grove, R.; Adamcova, D.; Braga, C.; Adamec, J. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics and bioinformatics. Proteomics, 2016, 16(13), 1889–1903. doi: 10.1002/pmic.201500546
  28. Bertrand, A.; Bipfubusa, M.; Castonguay, Y.; Rocher, S.; Szopinska-Morawska, A.; Papadopoulos, Y.; Renaut, J. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). BMC Plant Biology, 2016, 16, 65. doi: 10.1186/s12870-016-0751-2
  29. Bipfubusa, M.; Rocher, S.; Bertrand, A.; Castonguay, Y.; Renaut, J. Dataset of protein changes induced by cold acclimation in red clover (Trifolium pratense L.) populations recurrently selected for improved freezing tolerance. Data in Brief, 2016, 8, 570–574. doi: 10.1016/j.dib.2016.06.003
  30. Wang, Z.; Zourelias, L.; Wu, C.; Edwards, P.C.; Trombetta, M.; Passineau, M.J. Ultrasound-assisted nonviral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion. Gene Therapy, 2015, 22, 739–749. doi: 10.1038/gt.2015.36
  31. Lu, J.; Zhou, Z.; Zheng, J.; Zhang, Z.; Lu, R.; Liu, H.; Shi, H.; Tu, Z. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation. Toxicology and Applied Pharmacology, 2015, 288(1), 106–113. doi: 10.1016/j.taap.2015.07.020
  32. Printz, B.; Guerriero, G.; Sergeant, K.; Renaut, J.; Lutts, S.; Hausman, J.-F. Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem. Plant Science, 2015, 238, 13–25. doi: 10.1016/j.plantsci.2015.05.014
  33. Ashoub, A.; Baeumlisberger, M.;Neupaertl, M.; Karas, M.; Brüggemann, W. Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Molecular Biology, 2015, 87(4–5), 459–471. doi: 10.1007/s11103-015-0291-4
  34. Feret, R.; Lilley, K.S. Protein Profiling Using Two-Dimensional Difference Gel Electrophoresis (2-D DIGE). Current Protocols in Protein Science, 2014, 22.2.1-22.2.17. doi: 10.1002/0471140864.ps2202s75
  35. Molinari, C.E.; Casadio, Y.S.; Hartmann, B.T.; Livk, A.; Bringans, S.; Arthur, P.G.; Hartmann, P.E. Proteome Mapping of Human Skim Milk Proteins in Term and Preterm Milk. Journal of Proteome Research, 2012, 11(3), 1696-1714. doi: 10.1021/pr2008797

Cyanine5 alkyne

  1. Liu, M.; Apriceno, A.; Sipin, M.; Scarpa, E.; Rodriguez-Arco, L.; Poma, A.; Marchello, G.; Battaglia, G.; Angioletti-Uberti, S. Combinatorial entropy behaviour leads to range selective binding in ligand-receptor interactions. Nature Communications, 2020, 11, 4836. doi: 10.1038/s41467-020-18603-5
  2. Kocere, A.; Resseguier, J.; Wohlmann, J.; Skjeldal, F.M.; Khan, S.; Speth, M.; Dal, N.-J.K.; Ng, M.Y.W.; Alonso-Rodriguez, N.; Scarpa, E.; Rizzello, L.; Battaglia, G.; Griffiths, G.; Fenaroli, F. Real-time imaging of polymersome nanoparticles in zebrafish embryos engrafted with melanoma cancer cells: Localization, toxicity and treatment analysis. EBioMedicine, 2020, 58, 102902. doi: 10.1016/j.ebiom.2020.102902
  3. Monteiro, P.F.; Gulfam, M.; Monteiro, C.J.; Travanut, A.; Abelha, T.F.; Pearce, A.K.; Jerôme, C.; Grabowska, A.M.; Clarke, P.A.; Collins, H.M.; Heery, D.M.; Gershkovich, P.; Alexander, C. Synthesis of micellar-like terpolymer nanoparticles with reductively-cleavable cross-links and evaluation of efficacy in 2D and 3D models of triple negative breast cancer. Journal of Controlled Release, 2020, 323, 549–564. doi: 10.1016/j.jconrel.2020.04.049
  4. Zhou, L.; Wu, Y.; Luo, Y.; Li, H.; Meng, X.; Liu, Cl; Xiang, J.; Zhang, P.; Gong, P.; Cai, L. Mitochondria-localized Self-reporting Small Molecule Decorated Theranostic Agents for Cancer-organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2(11), 5164–5173. doi: 10.1021/acsabm.9b00811
  5. Mietlicki-Baase, E.G.; Liberini, C.G.; Workinger, J.L.; Bonaccorso, R.L.; Borner, T.; Reiner, D.J.; Koch-Laskowski, K.; McGrath, L.E.; Lhamo, R.; Stein, L.M.; De Jonghe, B.C.; Holz, G.G.; Roth, C.L.; Doyle, R.P.; Hayes, M.R. A Vitamin B12 Conjugate of Exendin-4 Improves Glucose Tolerance Without Associated Nausea or Hypophagia in Rodents. Diabetes, Obesity & Metabolism, 2018, 20(5), 1223–1234. doi: 10.1111/dom.13222
  6. Sacoman, J.L.; Dagda, R.Y.; Burnham-Marusich, A.R.; Dagda, R.K.; Berninsone, P.M. Mitochondrial O-GlcNAc transferase (mOGT) regulates mitochondrial structure, function and survival in HeLa cells. Journal of Biological Chemistry, 2017, 292(11), 4499–4518. doi: 10.1074/jbc.M116.726752
  7. Wallat, J.D.; Czapar, A.E.; Wang, C.; Wen, A.M.; Wek, K.S.; Yu, X.; Steinmetz, N.F.; Pokorski, J.K. Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules, 2017, 18(1), 103–112. doi: 10.1021/acs.biomac.6b01389
  8. Zhao, T.; Li, T.; Liu, Y. Silver nanoparticle plasmonic enhanced förster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface. Nanoscale, 2017, 9(28), 9841–9847. doi: 10.1039/c7nr01562c
  9. Ponomarenko, A.I.; Brylev, V.A.; Sapozhnikova, K.A.; Ustinov, A.V.; Prokhorenko, I.A.; Zatsepin, T.S.; Korshun, V.A. Tetrahedral DNA conjugates from pentaerythritol-based polyazides. Tetrahedron, 2016, 72(19), 2386–2391. doi: 10.1016/j.tet.2016.03.051
  10. Burnham-Marusich, A.R.; Plechaty, A.M.; Berninsone, P.M. Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation. Electrophoresis, 2014, 35(18), 2621-2625. doi: 10.1002/elps.201400241
  11. Truong, F.; Yoo, T.H.; Lampo, T.J.; Tirrell, D.A. Two-Strain, Cell-Selective Protein Labeling in Mixed Bacterial Cultures. Journal of the American Chemical Society, 2012, 134(20), 8551-8556. doi: 10.1021/ja3004667

Cyanine5 amine

  1. Kántor, I.; Aparaschivei, D.; Todea, A.; Biró, E.; Babos, G.; Szerényi, D.; Kakasi, B.; Péter, F:; Şişu, Eugen and Feczkó, T. Biocatalytic synthesis of poly[ε-caprolactone-co-(12-hydroxystearate)] copolymer for sorafenib nanoformulation useful in drug delivery. Catalysis Today, in press. doi: 10.1016/j.cattod.2020.05.005
  2. McCrorie, P.; Mistry, J.; Taresco, V.; Lovato, T.; Fay, M.; Ward, I.; Ritchie, A.A.; Clarke, P.A.; Smith, S.J.; Marlow, M.; Rahman, R. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 108–120. doi: 10.1016/j.ejpb.2020.10.005
  3. Hortelão, Ana C. and García-Jimeno, S.; Cano-Sarabia, M.; Patiño, T.; Maspoch, D.; Sanchez, S. LipoBots: Using Liposomal Vesicles as Protective Shell of Urease-Based Nanomotors. Advanced Functional Materials, 2020, 30(42), 2002767. doi: 10.1002/adfm.202002767
  4. Mahmoud, A.M.; Morrow, J.P.; Pizzi, D.; Azizah, A.M.; Davis, T.P.; Tabor, R.F.; Kempe, K. Tuning Cellular Interactions of Carboxylic Acid Side Chain Containing Polyacrylates: The Role of Cyanine Dye Label and Side Chain Type. Biomacromolecules, 2020, 21(8), 3007–3016. doi: 10.1021/acs.biomac.0c00244
  5. Zhao, Y.; Fletcher, N.L.; Gemmell, A.; Houston, Z.H.; Howard, C.B.; Blakey, I.; Liu, T.; Thurecht, K.J. Investigation of the Therapeutic Potential of a Synergistic Delivery System through Dual Controlled Release of Camptothecin–Doxorubicin. Advanced Therapeutics, 2020, 3(6), 1900202. doi: 10.1002/adtp.201900202
  6. Levada, K.; Pshenichnikov, S.; Omelyanchik, A.; Rodionova, V.; Nikitin, A.; Savchenko, A.; Schetinin, I.; Zhukov, D.; Abakumov, M.; Majouga, A.; Lunova, M.; Jirsa, M.; Smolková, B.; Uzhytchak, M.; Dejneka, A.; Lunov, O. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Convergence, 2020, 7, 17. doi: 10.1186/s40580-020-00228-5
  7. Fodor-Kardos, A.; Kiss, Á.F.; Monostory, K.; Feczkó, T. Sustained in vitro interferon-beta release and in vivo toxicity of PLGA and PEG-PLGA nanoparticles. RSC Advances, 2020, 10(27), 15893–15900. doi: 10.1039/c9ra09928j
  8. Ren, J.; Yin, X.; Chen, Y.; Chen, Y.; Su, H.; Wang, K.; Zhang, L.; Zhu, J.; Zhang, C. Alginate hydrogel-coated syringe needles for rapid haemostasis of vessel and viscera puncture. Biomaterials, 2020, 249, 120019. doi: 10.1016/j.biomaterials.2020.120019
  9. Yamada, K.J.; Heim, C.E.; Xi, X.; Attri, K.S.; Wang, D.; Zhang, W.; Singh, P.K.; Bronich, T.K.; Kielian, T. Monocyte metabolic reprogramming promotes pro-inflammatory activity and Staphylococcus aureus biofilm clearance. PLoS Pathogens, 2020, 16(3), e1008354. doi: 10.1371/journal.ppat.1008354
  10. Yuan, X.; Liu, L.; Wang, W.; Gao, Y.-R.; Zhang, D.; Jia, T.-T.; Zeng, H.-R.; Pan, G.; Yuan, Y. Development of (G3-C12)-mediated camptothecin polymeric prodrug targeting to Galectin-3 receptor against androgen-independent prostate cancer. International Journal of Pharmaceutics, 2020, 580, 119123. doi: 10.1016/j.ijpharm.2020.119123
  11. Sodano, F.; Cavanagh, R.; Pearce, A.K.; Lazzarato, L.; Rolando, B.; Fraix, A.; Abelha, T.F.; Vasey, C.; Alexander, C.; Taresco, V.; Sortino, S. Enhancing Doxorubicin Anticancer Activity with a Novel Polymeric Platform Photoreleasing Nitric Oxide. Biomaterials Science, 2020, 8(5), 1329–1344. doi: 10.1039/c9bm01644a
  12. Akhter, D.T.; Simpson, J.D.; Fletcher, N.L.; Houston, Z.H.; Fuchs, A.V.; Bell, C.A.; Thurecht, K.J. Oral Delivery of Multicompartment Nanomedicines for Colorectal Cancer Therapeutics: Combining Loco-Regional Delivery with Cell-Target Specificity. Advanced Therapeutics, 2020, 3(2), 1900171. doi: 10.1002/adtp.201900171
  13. de Oliveira, J.K.; Ueda-Nakamura, T.; Corrêa, A.G.; Petrilli, R.; Lopez, R.F.V.; Nakamura, C.V.; Auzely-Velty, R. Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. Materials Science and Engineering: C, 2020, 110, 110720. doi: 10.1016/j.msec.2020.110720
  14. Yang, Y.; Long, Y.; Wang, Y.; Ren, K.; Li, M.; Zhang, Z.; Xiang, B.; He, Q. Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. International Journal of Pharmaceutics, 2020, 577, 119085. doi: 10.1016/j.ijpharm.2020.119085
  15. Mahmoud, A.M.; Morrow, J.P.; Pizzi, D.; Nanayakkara, S.; Davis, T.P.; Saito, K.; Kempe, K. Nonionic Water-Soluble and Cytocompatible Poly(amide acrylate)s. Macromolecules, 2020, 53(2), 693–701. doi: 10.1021/acs.macromol.9b02267
  16. Imlimthan, S.; Correia, A.; Figueiredo, P.; Lintinen, K.; Balasubramanian, V.; Airaksinen, A.J.; Kostiainen, M.A.; Santos, H.A.; Sarparanta, M. Systematic In Vitro Biocompatibility Studies of Multimodal Cellulose Nanocrystal and Lignin Nanoparticles. Journal of Biomedical Materials Research. Part A, 2020, 108(3), 770–783. doi: 10.1002/jbm.a.36856
  17. Sarparanta, M.; Pourat, J.; Carnazza, K.E.; Tang, J.; Paknejad, N.; Reiner, T.; Kostiainen, M.A.; Lewis, J.S. Multimodality labeling strategies for the investigation of nanocrystalline cellulose biodistribution in a mouse model of breast cancer. Nuclear Medicine and Biology, 2020, 80–81, 1–12. doi: 10.1016/j.nucmedbio.2019.11.002
  18. Bayat, N.; McOrist, N.; Ariotti, N.; Lai, M.; Sia, K.C.; Li, Y.; Grace, J.L.; Quinn, J.F.; Whittaker, M.R.; Kavallaris, M.; Davis, T.P.; Lock, R.B. Thiol-Reactive Star Polymers Functionalized with Short Ethoxy-Containing Moieties Exhibit Enhanced Uptake in Acute Lymphoblastic Leukemia Cells. International Journal of Nanomedicine, 2019, 14, 9795–9808. doi: 10.2147/IJN.S220326
  19. Zhou, L.; Wu, Y.; Luo, Y.; Li, H.; Meng, X.; Liu, Cl; Xiang, J.; Zhang, P.; Gong, P.; Cai, L. Mitochondria-localized Self-reporting Small Molecule Decorated Theranostic Agents for Cancer-organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2(11), 5164–5173. doi: 10.1021/acsabm.9b00811
  20. Zhang, T.; Lip, H.; He, C.; Cai, P.; Wang, Z.; Henderson, J.T.; Rauth, A.M.; Wu, X.Y. Multitargeted Nanoparticles Deliver Synergistic Drugs across the Blood-Brain Barrier to Brain Metastases of Triple Negative Breast Cancer Cells and Tumor-Associated Macrophages. Advanced Healthcare Materials, 2019, 8(18), 1900543. doi: 10.1002/adhm.201900543
  21. Mahmoud, A.; de Jongh, P.; Briere, S.; Chen, M.Z.; Nowell, C.J.; Johnston, A.P.R.; Davis, T.P.; Haddleton, D.M.; Kempe, K. Carboxylated Cy5-labeled Comb Polymers Passively Diffuse the Cell Membrane and Target Mitochondria. ACS Applied Materials & Interfaces, 2019, 11(34), 31302–31310. doi: 10.1021/acsami.9b09395
  22. Yoneoka, S.; Nakagawa, Y.; Uto, K.; Sakura, K.; Tsukahara, T.; Ebara, M. Boron-incorporating hemagglutinating virus of Japan envelope (HVJ-E) nanomaterial in boron neutron capture therapy. Science and Technology of Advanced Materials, 2019, 20(1), 291–304. doi: 10.1080/14686996.2019.1586051
  23. Feczkó, T.; Merza, G.; Babos, G.; Varga, B.; Gyetvai, E.; Trif, L.; Kovács, E.; Tuba, R. Preparation of cubic-shaped sorafenib-loaded nanocomposite using well-defined poly(vinyl alcohol alt-propenylene) copolymer. International Journal of Pharmaceutics, 2019, 562, 333–341. doi: 10.1016/j.ijpharm.2019.03.008
  24. Wilson, D.R.; Rui, Y.; Siddiq, K.; Routkevitch, D.; Green, J.J. Differentially Branched Ester Amine Quadpolymers with Amphiphilic and pH Sensitive Properties for Efficient Plasmid DNA Delivery. Molecular Pharmaceutics, 2019, 16(2), 655–668. doi: 10.1021/acs.molpharmaceut.8b00963
  25. van Driessche, A; Kocere, A.; Everaert, H.; Nuhn, L.; van Herck, S.; Griffiths, G.; Fenaroli, F.; de Geest, B.G. pH-sensitive hydrazone-linked doxorubicin nanogels via polymeric activated ester scaffolds: synthesis, assembly, in vitro and in vivo evaluation in tumor bearing zebrafish. Chemistry of Materials, 2018, 30(23), 8587–8596. doi: 10.1021/acs.chemmater.8b03702
  26. Nuhn, L.; De Koker, S.; Van Lint, S.; Zhong, Z.; Catani, J.P.; Combes, F.; Deswarte, K.; Li, Y.; Lambrecht, B.N.; Lienenklaus, S.; Sanders, N.N.; David, S.A.; Tavernier, J.; De Geest, B.G. Nanoparticle-Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses. Advanced Materials, 2018, 30(45), e1803397. doi: 10.1002/adma.201803397
  27. van Herck, S.; Deswarte, K.; Nuhn, L.; Zhong, Z.; Portela Catani, J.P.; Li, Y.; Sanders, N.N.; Lienenklaus, S.; De Koker, S.; Lambrecht, B.N.; David, S.A.; De Geest, B.G. Lymph-Node-Targeted Immune Activation by Engineered Block Copolymer Amphiphiles-TLR7/8 Agonist Conjugates. Journal of the American Chemical Society, 2018, 140, 14300–14307. doi: 10.1021/jacs.8b08595
  28. Babos, G.; Biró, E.; Meiczinger, M.; Feczkó, T. Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles. Polymers, 2018, 10(8), 895. doi: 10.3390/polym10080895
  29. Nuhn, L.; Van Hoecke, L.; Deswarte, K.; Schepens, B.; Li, Y.; Lambrecht, B.N.; De Koker, S.; David, S.A.; Saelens, X.; De Geest, B.G. Potent anti-viral vaccine adjuvant based on pH-degradable nanogels with covalently linked small molecule imidazoquinoline TLR7/8 agonist. Biomaterials, 2018, 178, 643–651. doi: 10.1016/j.biomaterials.2018.03.026
  30. Kongkatigumjorn, N.; Smith, S.A.; Chen, M.Z.; Fang, K.; Yang, S.; Gillies, E.R.; Johnston, A.P.R.; Such, G.K. Controlling Endosomal Escape Using pH Responsive Nanoparticles with Tunable Disassembly. Applied Nano Materials, 2018, 1(7), 3164–3173. doi: 10.1021/acsanm.8b00338
  31. Wang, B.; Chen, G.; Urabe, G.; Xie, R.; Wang, Y.; Shi, X.; Guo, L.-W.; Gong, S.; Kent, K.C. A paradigm of endothelium-protective and stent-free anti-restenotic therapy using biomimetic nanoclusters. Biomaterials, 2018, 178, 293–301. doi: 10.1016/j.biomaterials.2018.06.025
  32. Shih, T.-Y.; Blacklow, S.O.; Li, A.W.; Freedman, B.R.; Bencherif, S.; Koshy, S.T.; Darnell, M.C.; Mooney, D.J. Injectable, Tough Alginate Cryogels as Cancer Vaccines. Advanced Healthcare Materials, 2018, 7(10), 1701469. doi: 10.1002/adhm.201701469
  33. Raghupathi, K.; Skinner, M.; Chang, G.; Crawley, C.; Yoshida-Moriguchi, T.; Pipenhagen, P.; Zhu, Y.; Avila, L.Z.; Miller, R.J.; Dhal, P.K. Hyaluronic Acid Microgels as Intracellular Endosomolysis Reagents. ACS Biomaterials Science & Engineering, 2018, 4(2), 558–565. doi: 10.1021/acsbiomaterials.7b00966
  34. Pan, G.; Jia, T.-t.; Huang, Q.-x. Qiu, Y.-y.; Xu, J. Yin, P.-h.; Liu, T. Mesoporous Silica Nanoparticles (MSNs)-Based Organic/Inorganic Hybrid Nanocarriers Loading 5-Fluorouracil for the Treatment of Colon Cancer with Improved Anticancer Efficacy. Colloids and Surfaces, B: Biointerfaces, 2017, 159, 375–385. doi: 10.1016/j.colsurfb.2017.08.013
  35. Chen, G.; Wang, Y.; Xie, R.; Gong, S. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. Journal of Controlled Release, 2017, 259, 105–114. doi: 10.1016/j.jconrel.2017.01.042
  36. Wilson, D.R.; Routkevitch, D.; Rui, Y.; Mosenia, A.; Wahlin, K.J.; Quinones-Hinojosa, A.; Zack, D.J.; Green, J.J. A Triple-Fluorophore Labeled Nucleic Acid pH Nanosensor to Investigate Non-Viral Gene Delivery. Molecular Therapy, 2017, 25(7), 1697–1709. doi: 10.1016/j.ymthe.2017.04.008
  37. Wang, Y.; Wang, L.; Chen, G.; Gong, S. Carboplatin-Complexed and cRGD-Conjugated Unimolecular Nanoparticles for Targeted Ovarian Cancer Therapy. Macromolecular Bioscience, 2017, 17(5), 1600292. doi: 10.1002/mabi.201600292
  38. Qu, J.-B.; Chapman, R.; Chen, F.; Lu, H.; Stenzel, M.H. Swollen Micelles for the Preparation of Gated, Squeezable, pH-Responsive Drug Carriers. ACS Applied Materials & Interfaces, 2017, 9(16), 13865–13874. doi: 10.1021/acsami.7b01120
  39. Yin, M.; Bao, Y.; Gao, X.; Wu, Y.; Sun, Y.; Zhao, X.; Xu, H.; Zhang, Z.; Tan, S. Redox/pH dual-sensitive hybrid micelles for targeting delivery and overcoming multidrug resistance of cancer. Journal of Materials Chemistry B, 2017, 5(16), 2964–2978. doi: 10.1039/c6tb03282f
  40. Glass, J.J.; Li, Y.; De Rose, R.; Johnston, A.P.R.; Czuba, E.I.; Khor, S.Y.; Quinn, J.F.; Whittaker, M.R.; Davis, T.P.; Kent, S.J. Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components. ACS Applied Materials & Interfaces, 2017, 9(14), 12182-12194. doi: 10.1021/acsami.6b15942
  41. Zhang, R.; Yang, J.; Radford, D.C.; Fang, Y.; Kopeček, J. FRET Imaging of Enzyme-Responsive HPMA Copolymer Conjugate. Macromolecular Bioscience, 2017, 17(1), 1600125. doi: 10.1002/mabi.201600125
  42. Shalgunov, V.; Zaytseva-Zotova, D.; Zinchenko, A.; Levada, T.; Shilov, Y.; Andreyev, D.; Dzhumashev, D.; Metelkin, E.; Urusova, A.; Demin, O.; McDonnell, K.; Troiano, G.; Zale, S.; Safarovа, E. Comprehensive study of the drug delivery properties of poly(L-lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice. Journal of Controlled Release, 2017, 261, 31–42. doi: 10.1016/j.jconrel.2017.06.006
  43. Stefanello, T.; Couturaud, B.; Szarpak, A.; Fournier, D.; Louage, B.; Garcia, F.; Vataru Nakamura, C.; De Geest, B.; Woisel, P.; van der Sanden, B.; Auzely, R. Coumarin-containing thermoresponsive hyaluronic acid-based nanogels as delivery systems for anticancer chemotherapy. Nanoscale, 2017, 9(33), 12150–12162. doi: 10.1039/C7NR03964F
  44. Yang, W.; Xia, Y.; Zou, Y.; Meng, F.; Zhang, J.; Zhong, Z. Bioresponsive Chimaeric Nano-polymersomes Enable Targeted and Efficacious Protein Therapy for Human Lung Cancers in Vivo. Chemistry of Materials, 2017, 29(20), 8757–8765. doi: 10.1021/acs.chemmater.7b02953
  45. Pombo-García, K.; Weiss, S.; Zarschler, K.; Ang, C.-S.; Hübner, R.; Pufe, J.; Meister, S.; Seidel, J.; Pietzsch, J.; Spiccia, L.; Stephan, H.; Graham, B. Zwitterionic polymer-coated ultrasmall superparamagnetic iron oxide nanoparticles with low protein interaction and high biocompatibility. ChemNanoMat, 2016, 2(10), 959–971. doi: 10.1002/cnma.201600233
  46. Mann, S.K.; Dufour, A.; Glass, J.J.; De Rose, R.; Kent, S.J.; Such, G.K.; Johnston, A.P.R. Tuning the properties of pH responsive nanoparticles to control cellular interactions in vitro and ex vivo. Polymer Chemistry, 2016, 7(38), 6015–6024. doi: 10.1039/c6py01332e
  47. Mann, S.K.; Czuba, E.; Selby, L.I.; Such, G.K.; Johnston, A.P.R. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay. Pharmaceutical Research, 2016, 33(10), 2421–2432. doi: 10.1007/s11095-016-1984-3
  48. Priwitaningrum, D.L.; Blonde, J.-B.; van Baarlen, J.; Hennink, W.E.; Storm, G.; Le Gac, S.; Prakash, J. Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration. Journal of Controlled Release, 2016, 244(Part B), 257–268. doi: 10.1016/j.jconrel.2016.09.004
  49. Zhu, Y.; Wang, X.; Chen, J.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. Journal of controlled release, 2016, 244(Part B), 229–239. doi: 10.1016/j.jconrel.2016.08.027
  50. Hartley, J.M.; Zhang, R.; Gudheti, M.; Yang, J.; Kopeček, J. Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM. Journal of Controlled Release, 2016, 231, 50–59. doi: 10.1016/j.jconrel.2016.02.005
  51. Bruckman, M.A.; Czapar, A.E.; VanMeter, A.; Randolph, L.N.; Steinmetz, N.F. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 2016, 231, 103–113. doi: 10.1016/j.jconrel.2016.02.045
  52. Liu, T.; Yuan, X.; Jia, T.; and Liu, C.; Ni, Z.; Qin, Z.; Yuan, Y. Polymeric Prodrug of Bufalin for Increasing Solubility and Stability: Synthesis and Anticancer Study in Vitro and in Vivo. International Journal of Pharmaceutics, 2016, 506(1–2), 382–393. doi: 10.1016/j.ijpharm.2016.04.041
  53. Pan, G.; Bao, Y.-J.; Xu, J.; Liu, T.; Liu, C.; Qiu, Y.-Y.; Shi, X.-J.; Yu, H.; Jia, T.-T.; Yuan, X.; Yuan, Z.-T.; Yin, P.-H.; Cao, Y.-J. Esterase-responsive polymeric prodrug-based tumor targeting nanoparticles for improved anti-tumor performance against colon cancer. RSC Advances, 2016, 6(48), 42109–42119. doi: 10.1039/c6ra05236c
  54. Gao, D.; Zhang, P.; Liu, C.; Chen, C.; Gao, G.; Wu, Y.; Sheng, Z.; Song, L.; Cai, L. Compact chelator-free Ni-integrated CuS nanoparticles with tunable near-infrared absorption and enhanced relaxivity for in vivo dual-modal photoacoustic/MR imaging. Nanoscale, 2015, 7, 17631–17636. doi: 10.1039/C5NR05237H
  55. Yang, J.; Zhang, R.; Radford, D.C.; Kopeček, J. FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. Journal of Controlled Release, 2015, 218, 36–44. doi: 10.1016/j.jconrel.2015.09.045
  56. Fuchs, A.V.; Tse, B.W.C.; Pearce, A.K.; Yeh, M.-C.; Fletcher, N.L.; Huang, S.S.; Heston, W.D.; Whittaker, A.K.; Russell, P.J.; Thurecht, K.J. Evaluation of Polymeric Nanomedicines Targeted to PSMA: Effect of Ligand on Targeting Efficiency. Biomacromolecules, 2015, 16(10), 3235–3247. doi: 10.1021/acs.biomac.5b00913
  57. Li, H.; Yang, Z.-Y.; Liu, C.; Zeng, Y.-P.; Hao, Y.-H. Gu, Y.; Wang, W.-D.; Li, R. PEGylated ceria nanoparticles used for radioprotection on Human liver cells under γ-ray irradiation. Free Radical Biology and Medicine, 2015, 87, 26–35. doi: 10.1016/j.freeradbiomed.2015.06.010
  58. Guo, Y.; Wang, D.; Song, Q.; Wu, T.; Zhuang, X.; Bao, Y.; Kong, M.; Qi, Y.; Tan, S.; Zhang, Z. Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma. ACS Nano, 2015, 9(7), 6918–6933. doi: 10.1021/acsnano.5b01042
  59. Ma, Y.; Fuchs, A.; Boase, N.R.B.; Rolfe, B.E.; Coombes, A.G.A.; Thurecht, K.J. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: evaluation of their potential for colon-specific delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 393–403. doi: 10.1016/j.ejpb.2015.06.014
  60. Zhang, R.; Yang, J.; Sima, M.; Zhou, Y.; Kopeček, J. Sequential combination therapy of ovarian cancer with degradable N-(2-hydroxypropyl)methacrylamide copolymer paclitaxel and gemcitabine conjugates. Proceedings of the National Academy of Sciences of the U.S.A., 2014, 111(33), 12181-12186. doi: 10.1073/pnas.1406233111

Cyanine5 azide

  1. von Döhren, J.; Kuhl, S. A simple method for long-term vital-staining of ciliated epidermal cells in aquatic larvae. Journal of Biological Methods, 2020, 7(2), e132. doi: 10.14440/jbm.2020.320
  2. Qiu, J.; Li, X.; Steenkeste, K.; Barroca-Aubry, N.; Aymes-Chodur, C.; Roger, P.; Casas-Solvas, J.M.; Vargas-Berenguel, A.; Rihouey, C.; Picton, L.; Gref, R. Self-assembled multifunctional core-shell highly porous metal-organic framework nanoparticles. International Journal of Pharmaceutics, 2020, 581, 119281. doi: 10.1016/j.ijpharm.2020.119281
  3. Tan, M.S.Y.; Davison, D.; Sanchez, M.I.; Anderson, B.M.; Howell, S.; Snijders, A.; Edgington-Mitchell, L.E.; Deu, E. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases. PLoS One, 2020, 15(1), e0227341. doi: 10.1371/journal.pone.0227341
  4. He, H.; Sofman, M.; Wang, A.J.-S.; Ahrens, C.C.; Wang, W.; Griffith, L.G.; Hammond, P.T. Engineering Helical Modular Polypeptide-Based Hydrogels as Synthetic Extracellular Matrices for Cell Culture. Biomacromolecules, 2020, 21(2), 566–580. doi: 10.1021/acs.biomac.9b01297
  5. Chen, F.; Bai, M.; Cao, X.; Zhao, Y.; Xue, J.; Zhao, Y. Click-encoded rolling FISH for visualizing single-cell RNA polyadenylation and structures. Nucleic Acids Research, 2019, 47(22), e145. doi: 10.1093/nar/gkz852
  6. Nozeret, K.; Boucharlat, A.; Agou, F.; Buddelmeijer, N. A sensitive fluorescence-based assay to monitor enzymatic activity of the essential integral membrane protein Apolipoprotein N-acyltransferase (Lnt). Scientific Reports, 2019, 9, 15978. doi: 10.1038/s41598-019-52106-8
  7. Harris, J.M.; Bentley, M.D.; Moreadith, R.W.; Viegas, T.X.; Fang, Z.; Yoon, K.; Weimer, R.; Dizman, B.; Nordstierna, L. Tuning Drug Release From Polyoxazoline-Drug Conjugates. European Polymer Journal, 2019, 120, 109241. doi: 10.1016/j.eurpolymj.2019.109241
  8. Rancan, F.; Volkmann, H.; Giulbudagian, M.; Schumacher, F.; Stanko, J.I.; Kleuser, B.; Blume-Peytavi, U.; Calderón, M.; Vogt, A. Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels. Pharmaceutics, 2019, 11(8), E394. doi: 10.3390/pharmaceutics11080394
  9. Kasprzyk, R.; Starek, B.J.; Ciechanowicz, S.; Kubacka, D.; Kowalska, J.; Jemielity, J. Fluorescent turn-on probes for the development of binding and hydrolytic activity assays for mRNA cap-recognising proteins. Chemistry, 2019, 25(27), 6728–6740. doi: 10.1002/chem.201900051
  10. Lo, C.-W.; Kryvalap, Y.; Sheu, T.-J.; Chang, C.-H.; Czyzyk, J. Cellular proliferation in mouse and human pancreatic islets is regulated by serpin B13 inhibition and downstream targeting of E-cadherin by cathepsin L. Diabetologia, 2019, 62(5), 822–834. doi: 10.1007/s00125-019-4834-0
  11. Fu, Y.; Long, M.J.C.; Wisitpitthaya, S.; Inayat, H.; Pierpont, T.M.; Elsaid, I.M.; Bloom, J.C.; Ortega, J.; Weiss, R.S.; Aye, Y. Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Nature Chemical Biology, 2018, 14(10), 943–954. doi: 10.1038/s41589-018-0113-5
  12. Surya, S.L.; Long, M.J.C.; Urul, D.A.; Zhao, Y.; Mercer, E.J.; EIsaid, I.M.; Evans, T.; Aye, Y. Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor. ACS Chemical Biology, 2018, 13(7), 1824–1831. doi: 10.1021/acschembio.7b00925
  13. Owiti, N.; Wei, S.; Bhagwat, A.; Kim, N. Unscheduled DNA synthesis leads to elevated uracil residues at highly transcribed genomic loci in Saccharomyces cerevisiae. PLoS Genetics, 2018, 14(7), e1007516. doi: 10.1371/journal.pgen.1007516
  14. Zemella, A.; Thoring, L.; Hoffmeister, C.; Šamalíková, M.; Ehren, P.; Wüstenhagen, D.A.; Kubick, S. Cell-free protein synthesis as a novel tool for directed glycoengineering of active erythropoietin. Scientific Reports, 2018, 8, 8514. doi: 10.1038/s41598-018-26936-x
  15. Kidwell, C.U.; Su, C.-Y.; Hibi, M.; Moens, C.B. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum. Developmental Biology, 2018, 438(1), 44–56. doi: 10.1016/j.ydbio.2018.03.004
  16. Long, M.J.C.; Urul, D.A.; Chawla, S.; Lin, H.-Y.; Zhao, Y.; Haegele, J.A.; Wang, Y.; Aye, Y. Precision Electrophile Tagging in Caenorhabditis elegans. Biochemistry, 2018, 57(2), 216–220. doi: 10.1021/acs.biochem.7b00642
  17. Maudens, P.; Meyer, S.; Seemayer, C.A.; Jordan, O.; Allémann, E. Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale, 2018, 10(4), 1845–1854. doi: 10.1039/C7NR07614B
  18. Wei, S.; Perera, M.L.W.; Sakhtemani, R.; Bhagwat, A.S. A novel class of chemicals that react with abasic sites in DNA and specifically kill B cell cancers. PLoS One, 2017, 12, e0185010. doi: 10.1371/journal.pone.0185010
  19. Shabanpoor, F.; Hammond, S.M.; Abendroth, F.; Hazell, G.; Wood, M.J.A.; Gait, M.J. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy. Nucleic Acid Therapeutics, 2017, 27(3), 130–143. doi: 10.1089/nat.2016.0652
  20. Long, M.J.C.; Parvez, S.; Zhao, Y.; Surya, S.L.; Wang, Y.; Zhang, S.; Aye, Y. Akt3 is a privileged first responder in isozyme-specific electrophile response. Nature Chemical Biology, 2017, 13(3), 333–338. doi: 10.1038/nchembio.2284
  21. Cho, W.; Koo, J.Y.; Park, Y.; Oh, K.; Lee, S.; Song, J.-S.; Bae, M.A.; Lim, D.; Lee, D.-S.; Park, S.B:. Treatment of Sepsis Pathogenesis with High Mobility Group Box Protein 1-Regulating Anti-inflammatory Agents. Journal of Medicinal Chemistry, 2017, 60(1), 170–179. doi: 10.1021/acs.jmedchem.6b00954
  22. Westergaard Mulberg, M.; Taskova, M.; Thomsen, R.P.; Okholm, A.H.; Kjems, J.; Astakhova, K. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods. Chembiochem, 2017, 18(16), 1599–1603. doi: 10.1002/cbic.201700125
  23. Louage, B.; Tack, L.; Wang, Y.; De Geest, B.G. Poly(glycerol sebacate) nanoparticles for encapsulation of hydrophobic anti-cancer drugs. Polymer Chemistry, 2017, 8(34), 5033–5038. doi: 10.1039/c6py02192a
  24. Barsh, G.R.; Isabella, A.J.; Moens, C.B. Vagus Motor Neuron Topographic Map Determined by Parallel Mechanisms of hox5 Expression and Time of Axon Initiation. Current Biology, 2017, 27(24), 3812–3825.e3. doi: 10.1016/j.cub.2017.11.022
  25. Fiacco, S.V.; Kelderhouse, L.E.; Hardy, A.; Peleg, Y.; Hu, B.; Ornelas, A.; Yang, P.; Gammon, S.T.; Howell, S.M.; Wang, P.; Takahashi, T.T.; Millward, S.W.; Roberts, R.W. Directed Evolution of Scanning Unnatural-Protease-Resistant (SUPR) Peptides for in Vivo Applications. Chembiochem, 2016, 17(17), 1643–1651. doi: 10.1002/cbic.201600253
  26. Farzan, V.M.; Aparin, I.O.; Veselova, O.A.; Podkolzin, A.T.; Shipulin, G.A.; Korshun, V.A.; Zatsepin, T.S. Cy5/BHQ dye-quencher pairs in fluorogenic qPCR probes: effects of charge and hydrophobicity. Analytical Methods, 2016, 8(29), 5826–5831. doi: 10.1039/c6ay01304j
  27. Braner, M.; Kollmannsperger, A.; Wieneke, R.; Tampé, R. ’Traceless’ Tracing of Proteins – High-Affinity Trans-Splicing Directed by a Minimal Interaction Pair. Chemical Science, 2016, 7(4), 2646–2652. doi: 10.1039/C5SC02936H
  28. Li, L.; Grausam, K.B.; Wang, J.; Lun, M.P.; Ohli, J.; Lidov, H.G.W.; Calicchio, M.L.; Zeng, E.; Salisbury, J.L.; Wechsler-Reya, R.J.; Lehtinen, M.K.; Schüller, U.; Zhao, H. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nature Cell Biology, 2016, 18(4), 418–430. doi: 10.1038/ncb3327
  29. Yoshimatsu, T.; D'Orazi, F.D.; Gamlin, C.R.; Suzuki, S.C.; Suli, A.; Kimelman, D.; Raible, D.W.; Wong, R.O. Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo. Nature Communications, 2016, 7, 10590. doi: 10.1038/ncomms10590
  30. van der Velde, J.H.M.; Oelerich, J.; Huang, J.; Smit, J.H.; Aminian Jazi, A.; Galiani, S.; Kolmakov, K.; Guoridis, G.; Eggeling, C.; Herrmann, A.; Roelfes, G.; Cordes, T. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nature Communications, 2016, 7, 10144. doi: 10.1038/ncomms10144
  31. Park, H.; Koo, J.Y.; Srikanth, Y.V.V.; Oh, S.; Lee, J.; Park, J.; Park, S.B. Nonspecific protein labeling of photoaffinity linkers correlates with their molecular shapes in living cells. Chemical Communications, 2016, 52(34), 5828–5831. doi: 10.1039/c6cc01426g
  32. Wei, S.; Shalhout, S.; Ahn, Y.-H.; Bhagwat, A.S. A Versatile New Tool to Quantify Abasic Sites in DNA and Inhibit Base Excision Repair. DNA Repair, 2015, 27, 9–18. doi: doi:10.1016/j.dnarep.2014.12.006
  33. Hong, T.N.; van der Hoorn, R.A.L. DIGE-ABPP by Click Chemistry: Pairwise Comparison of Serine Hydrolase Activities from the Apoplast of Infected Plants. Plant-Pathogen Interactions (Methods in Molecular Biology), 2014, 1127, 183-194. doi: 10.1007/978-1-62703-986-4_15
  34. Nobori, T.; Shiosaki, S.; Mori, T.; Toita, R.; Kim, C.W.; Nakamura, Y.; Kishimura, A.; Niidome, T.; Katayama, Y. Fluorescent Polyion Complex Nanoparticle That Incorporates an Internal Standard for Quantitative Analysis of Protein Kinase Activity. Bioconjugate Chemistry, 2014, 25(5), 869-872. doi: 10.1021/bc500142j
  35. Palsuledesai, C.C.; Ochocki, J.D.; Markowski, T.W.; Distefano, M.D. A combination of metabolic labeling and 2D-DIGE analysis in response to a farnesyltransferase inhibitor facilitates the discovery of new prenylated proteins. Molecular BioSystems, 2014, 10(5), 1094-1103. doi: 10.1039/c3mb70593e
  36. Shabanpoor, F.; Gait, M.J. Development of a general methodology for labelling peptide–morpholino oligonucleotide conjugates using alkyne–azide click chemistry. Chemical Communications, 2013, 49, 10260–10262. doi: 10.1039/c3cc46067c
  37. Astakhova, I.K.; Wengel, J. Interfacing Click Chemistry with Automated Oligonucleotide Synthesis for the Preparation of Fluorescent DNA Probes Containing Internal Xanthene and Cyanine Dyes. Chemistry - a European Journal, 2013, 19(3), 1112-1122. doi: 10.1002/chem.201202621
  38. Kim, J.; Seo, M.-H.; Lee, S.; Cho, K.; Yang, A.; Woo, K.; Kim, H.-S.; Park, H.-S. Simple and Efficient Strategy for Site-Specific Dual Labeling of Proteins for Single-Molecule Fluorescence Resonance Energy Transfer Analysis. Analytical Chemistry, 2013, 85(3), 1468-1474. doi: 10.1021/ac303089v
  39. McGouran, J.F.; Kramer, H.B.; Mackeen, M.M.; di Gleria, K.; Altun, M.; Kessler, B.M. Fluorescence-based active site probes for profiling deubiquitinating enzymes. Organic & Biomolecular Chemistry, 2012, 10(17), 3379-3379. doi: 10.1039/c2ob25258a
  40. Paredes, E.; Das, S.R. Click Chemistry for Rapid Labeling and Ligation of RNA. ChemBioChem, 2010, 12(1), 125-131. doi: 10.1002/cbic.201000466
  41. Ranall, M.; Gabrielli, B.; Gonda, T. Adaptation and validation of DNA synthesis detection by fluorescent dye derivatization for high-throughput screening. BioTechniques, 2010, 48(5), 379-386. doi: 10.2144/000113410

Cyanine5 carboxylic acid

  1. Pfister, J.; Lichius, A.; Summer, D.; Haas, H.; Kanagasundaram, T.; Kopka, K.; Decristoforo, C. Live-cell imaging with Aspergillus fumigatus-specific fluorescent siderophore conjugates. Scientific Reports, 2020, 10, 15519. doi: 10.1038/s41598-020-72452-2
  2. Reshitko, G.S.; Yamansarov, E.Y.; Evteev, S.A.; Lopatukhina, E.V.; Shkil', D.O.; Saltykova, I.V.; Lopukhov, A.V.; Kovalev, S.V.; Lobov, A.N.; Kislyakov, I.V.; Burenina, O.Y.; Klyachko, N.L.; Garanina, A.S.; Dontsova, O.A.; Ivanenkov, Y.A.; Erofeev, A.S.; Gorelkin, P.V.; Beloglazkina, E.K.; Majouga, A.G. Synthesis and Evaluation of New Trivalent Ligands for Hepatocyte Targeting via the Asialoglycoprotein Receptor. Bioconjugate Chemistry, 2020, 31(5), 1313–1319. doi: 10.1021/acs.bioconjchem.0c00202
  3. Martínez-Jothar, L.; Barendrecht, A.D.; de Graaff, A.M.; Oliveira, S.; van Nostrum, C.F.; Schiffelers, R.M.; Hennink, W.E.; Fens, M.H.A.M. Endothelial Cell Targeting by cRGD-Functionalized Polymeric Nanoparticles under Static and Flow Conditions. Nanomaterials, 2020, 10(7), 1353. doi: 10.3390/nano10071353
  4. Emaus, M.N.; Anderson, J.L. Allelic discrimination between circulating tumor DNA fragments enabled by a multiplex-qPCR assay containing DNA-enriched magnetic ionic liquids. Analytica Chimica Acta, 2020, 1124, 184–193. doi: 10.1016/j.aca.2020.04.078
  5. Matoori, S.; Mooney, D.J. Near-Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16(20), 2000369. doi: 10.1002/smll.202000369
  6. Pfister, J.; Summer, D.; Petrik, M.; Khoylou, M.; Lichius, A.; Kaeopookum, P.; Kochinke, L.; Orasch, T.; Haas, H.; Decristoforo, C. Hybrid Imaging of Aspergillus fumigatus Pulmonary Infection with Fluorescent, 68Ga-Labelled Siderophores. Biomolecules, 2020, 10, 168. doi: 10.3390/biom10020168
  7. Ni, R.; Song, G.; Fu, X.; Song, R.; Li, L.; Pu, W.; Gao, J.; Hu, J.; Liu, Q.; He, F.; Zhang, D.; Huang, G. Reactive oxygen species-responsive dexamethasone-loaded nanoparticles for targeted treatment of rheumatoid arthritis via suppressing the iRhom2/TNF-α/BAFF signaling pathway. Biomaterials, 2020, 232, 119730. doi: 10.1016/j.biomaterials.2019.119730
  8. Zhou, L.; Wu, Y.; Luo, Y.; Li, H.; Meng, X.; Liu, Cl; Xiang, J.; Zhang, P.; Gong, P.; Cai, L. Mitochondria-localized Self-reporting Small Molecule Decorated Theranostic Agents for Cancer-organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2(11), 5164–5173. doi: 10.1021/acsabm.9b00811
  9. Wang, Y.; Yuan, Q.; Feng, W.; Pu, W.; Ding, J.; Zhang, H.; Li, X.; Yang, B.; Dai, Q.; Cheng, L.; Wang, J.; Sun, F.; Zhang, D. Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. Journal of Nanobiotechnology, 2019, 17, 103. doi: 10.1186/s12951-019-0537-4
  10. Santra, K.; Clark, K.D.; Maity, N.; Petrich, J.W.; Anderson, J.L. Exploiting Fluorescence Spectroscopy to Identify Magnetic Ionic Liquids Suitable for the Isolation of Oligonucleotides. The Journal of Physical Chemistry B, 2018, 122(31), 7747–7756. doi: 10.1021/acs.jpcb.8b05580
  11. Semkina, A.S.; Abakumov, M.A.; Skorikov, A.S.; Abakumova, T.O.; Melnikov, P.A.; Grinenko, N.F.; Cherepanov, S.A.; Vishnevskiy, D.A.; Naumenko, V.A.; Ionova, K.P.; Majouga, A.G.; Chekhonin, V.P. Multimodal doxorubicin loaded magnetic nanoparticles for {VEGF} targeted theranostics of breast cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(5), 1733–1742. doi: 10.1016/j.nano.2018.04.019
  12. Mattila, J.T.; Beaino, W.; Maiello, P.; Coleman, M.T.; White, A.G.; Scanga, C.A.; Flynn, J.A.; Anderson, C.J. Positron Emission Tomography Imaging of Macaques with Tuberculosis Identifies Temporal Changes in Granuloma Glucose Metabolism and Integrin α4β1-Expressing Immune Cells. Journal of immunology, 2017, 199(2), 806–815. doi: 10.4049/jimmunol.1700231
  13. Kwok, S.J.J.; Choi, M.; Bhayana, B.; Zhang, X.; Ran, C.; Yun, S.-H. Two-photon excited photoconversion of cyanine-based dyes. Scientific Reports, 2016, 6, 23866. doi: 10.1038/srep23866
  14. Gupta, A.; Verma, N.C.; Khan, S.; Tiwari, S.; Chaudhary, A.; Nandi, C.K. Paper strip based and live cell ultrasensitive lead sensor using carbon dots synthesized from biological media. Sensors and Actuators B: Chemical, 2016, 232, 107–114. doi: 10.1016/j.snb.2016.03.110
  15. Deyle, K.M.; Farrow, B.; Hee, Y.Q.; Work, J.; Wong, M.; Lai, B.; Umeda, A.; Millward, S.W.; Nag, A.; Das, S.; Heath, J.R. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1. Nature Chemistry, 2015, 7, 455–462. doi: 10.1038/nchem.2223
  16. Rand, M.D.; Montgomery, S.L.; Prince, L.; Vorojeikina, D. Developmental Toxicity Assays Using the Drosophila Model. Current Protocols in Toxicology, 2014, 1.12.1-1.12.20. doi: 10.1002/0471140856.tx0112s59

Cyanine5 hydrazide

  1. Imlimthan, S.; Correia, A.; Figueiredo, P.; Lintinen, K.; Balasubramanian, V.; Airaksinen, A.J.; Kostiainen, M.A.; Santos, H.A.; Sarparanta, M. Systematic In Vitro Biocompatibility Studies of Multimodal Cellulose Nanocrystal and Lignin Nanoparticles. Journal of Biomedical Materials Research. Part A, 2020, 108(3), 770–783. doi: 10.1002/jbm.a.36856
  2. Wang, J.; Johnson, A.G.; Lapointe, C.P.; Choi, J.; Prabhakar, A.; Chen, D.-H.; Petrov, A.N.; Puglisi, J.D. eIF5B gates the transition from translation initiation to elongation. Nature, 2019, 573, 605–608. doi: 10.1038/s41586-019-1561-0
  3. Boone, C.; Grove, R.; Adamcova, D.; Braga, C.; Adamec, J. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics and bioinformatics. Proteomics, 2016, 16(13), 1889–1903. doi: 10.1002/pmic.201500546
  4. Yoshimura, T.; Harashima, M.; Kurogi, K.; Suiko, M.; Liu, M.-C.; Sakakibara, Y. A novel procedure for the assessment of the antioxidant capacity of food components. Analytical Biochemistry, 2016, 507, 7–12. doi: 10.1016/j.ab.2016.05.002
  5. Huang, J.; Smith, F.; Panizzi, J.R.; Goodwin, D.C.; Panizzi, P. Inactivation of myeloperoxidase by benzoic acid hydrazide. Archives of Biochemistry and Biophysics, 2015, 570, 14–22. doi: 10.1016/j.abb.2015.01.028
  6. Einfalt, T.; Goers, R.; Dinu, I.A.; Najer, A.; Spulber, M.; Onaca-Fischer, O.; Palivan, C.G. Stimuli-triggered activity of nanoreactors by biomimetic engineering polymer membranes. Nano Letters, 2015, 15(11), 7596–7603. doi: 10.1021/acs.nanolett.5b03386
  7. Nienhaus, L.; Gross, D.E.; Xue, Z.; Moore, J.S.; Gruebele, M. Intramolecular energy transfer in a synthetic dendron-based light harvesting system. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 295, 26-33. doi: 10.1016/j.jphotochem.2014.08.014
  8. Xie, M.; Xu, Y.; Shen, H.; Shen, S.; Ge, Y.; Xie, J. Negative-charge-functionalized mesoporous silica nanoparticles as drug vehicles targeting hepatocellular carcinoma. International Journal of Pharmaceutics, 2014, 474, 223-231. doi: 10.1016/j.ijpharm.2014.08.027
  9. Chang, Y.; Cai, C.; Li, L.; Miao, J.; Ucakturk, E.; Li, G.; Ly, M.; Linhardt, R.J. Ultrasensitive Detection and Quantification of Acidic Disaccharides Using Capillary Electrophoresis and Quantum Dot-Based Fluorescence Resonance Energy Transfer. Analytical Chemistry, 2013, 85(19), 9356-9362. doi: 10.1021/ac402242v
  10. Shen, H.; Shi, H.; Xie, M.; Ma, K.; Li, B.; Shen, S.; Wang, X.; Jin, Y. Biodegradable chitosan/alginate BSA-gel-capsules for pH-controlled loading and release of doxorubicin and treatment of pulmonary melanoma. Journal of Materials Chemistry B, 2013, 1(32), 3906-3906. doi: 10.1039/c3tb20330a
  11. Xie, M.; Shi, H.; Li, Z.; Shen, H.; Ma, K.; Li, B.; Shen, S.; Jin, Y. A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids and Surfaces B: Biointerfaces, 2013, 110, 138-147. doi: 10.1016/j.colsurfb.2013.04.009
  12. Xie, M.; Shi, H.; Ma, K.; Shen, H.; Li, B.; Shen, S.; Wang, X.; Jin, Y. Hybrid nanoparticles for drug delivery and bioimaging: Mesoporous silica nanoparticles functionalized with carboxyl groups and a near-infrared fluorescent dye. Journal of Colloid and Interface Science, 2013, 395, 306-314. doi: 10.1016/j.jcis.2013.01.001
  13. Xie, M.; Shi, H.; Ma, K.; Shen, H.; Li, B.; Shen, S.; Wang, X.; Jin, Y. Hybrid nanoparticles for drug delivery and bioimaging: Mesoporous silica nanoparticles functionalized with carboxyl groups and a near-infrared fluorescent dye. Journal of Colloid and Interface Science, 2013, 395, 306-314. doi: 10.1016/j.jcis.2013.01.001

Cyanine5 maleimide

  1. Catipovic, M.A.; Rapoport, T.A. Protease protection assays show polypeptide movement into the SecY channel by power strokes of the SecA ATPase. EMBO Reports, in press. doi: 10.15252/embr.202050905
  2. Delvaux, N.A.; Mathew, B.; Rice, K.G. Fluorescent Labeling of Plasmid DNA for Gene Delivery: Implications of Dye Hydrophobicity on Labeling Efficiencies and Nanoparticle Size. Analytical Biochemistry, in press. doi: 10.1016/j.ab.2020.113895
  3. Deol, K.K.; Crowe, S.O.; Du, J.; Bisbee, H.; Guenette, R.G.; Strieter, E.R. Proteasome-Bound UCH37 Debranches Ubiquitin Chains to Promote Degradation. bioRxiv, preprint. doi: 10.1101/2020.02.21.960088
  4. Yang, M.; Zhang, L.; Sun, R.; Zhong, W.; Yang, Y.; Chen, C. Streptococcus pyogenes Cas9 displays biased one-dimensional diffusion on dsDNA to search for a target. bioRxiv, preprint. doi: 10.1101/754564
  5. Ast, J.; Arvaniti, A.; Fine, N.H.F.; Nasteska, D.; Ashford, F.B.; Stamataki, Z.M Koszegi, Z.; Bacon, A.; Trapp, S.; Jones, B.J.; Hastoy, B.; Tomas, A.; Reissaus, C.; Linnemann, A.K.; D'Este, E.; Calebiro, D.; Johnsson, K.; Podewin, T.; Broichhagen, J.; Hodson, D.J. LUXendins reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. bioRxiv, preprint. doi: 10.1101/557132
  6. Vu, M.N.; Kelly, H.G.; Wheatley, A.K.; Peng, S.; Pilkington, E.H.; Veldhuis, N.A.; Davis, T.P.; Kent, S.J.; Truong, N.P. Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network. Small, 2020, 16(33), e2002861. doi: 10.1002/smll.202002861
  7. Taipaleenmäki, E.; Christensen, G.; Brodszkij, E.; Mouritzen, S.A.; Gal, N.; Madsen, S.; Hedemann, M.S.; Knudsen, T.A.; Jensen, H.M.; Christiansen, S.L.; Sparsø, F.V.; Städler, B. Mucopenetrating polymer - Lipid hybrid nanovesicles as subunits in alginate beads as an oral formulation. Journal of Controlled Release, 2020, 322, 470–485. doi: 10.1016/j.jconrel.2020.03.047
  8. Ast, J.; Arvaniti, A.; Fine, N.H.F.; Nasteska, D.; Ashford, F.B.; Stamataki, Z.; Koszegi, Z.; Bacon, A.; Jones, B.J.; Lucey, M.A.; Sasaki, S.; Brierley, D.I.; Hastoy, B.; Tomas, A.; D'Agostino, G.; Reimann, F.; Lynn, F.C.; Reissaus, C.A.; Linnemann, A.K.; D'Este, E.; Calebiro, D.; Trapp, S.; Johnsson, K.; Podewin, T.; Broichhagen, J.; Hodson, D.J. Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nature Communications, 2020, 11, 467. doi: 10.1038/s41467-020-14309-w
  9. Kesarwani, V.; Kelly, H.G.; Shankar, M.; Robinson, K.J.; Kent, S.J.; Traven, A.; Corrie, S.R. Characterisation of key bio-nano interactions between organosilica nanoparticles and Candida albicans. ACS Applied Materials & Interfaces, 2019, 11(38), 34676–34687. doi: 10.1021/acsami.9b10853
  10. Gardinier, T.C.; Turker, M.Z.; Hinckley, J.A.; Katt, W.P.; DomNwachukwu, N.; Woodruff, F.; Hersh, J.; Wang, J.; Cerione, R.A.; Wiesner, U.B. Controlling Surface Chemical Heterogeneities of Ultrasmall Fluorescent Core–Shell Silica Nanoparticles as Revealed by High-Performance Liquid Chromatography. The Journal of Physical Chemistry C, 2019, 123(37), 23246–23254. doi: 10.1021/acs.jpcc.9b06905
  11. Turker, M.Z.; Gardinier, T.C.; Hinckley, J.A.; Contreras, C.B.; Woodruff, F.; Ma, K.; Kohle, F.F.E.; Wiesner, U.B. Inner and Outer Surface Functionalizations of Ultrasmall Fluorescent Silica Nanorings As Shown by High-Performance Liquid Chromatography. Chemistry of Materials, 2019, 31(15), 5519–5528. doi: 10.1021/acs.chemmater.9b01236
  12. Catipovic, M.A.; Bauer, B.W.; Loparo, J.J.; Rapoport, T.A. Protein translocation by the SecA ATPase occurs by a power-stroke mechanism. EMBO Journal, 2019, 38(9), e101140. doi: 10.15252/embj.2018101140
  13. Armache, J.P.; Gamarra, N.; Johnson, S.L.; Leonard, J.D.; Wu, S.; Narlikar, G.J.; Cheng, Y. Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. eLife, 2019, 8, e46057. doi: 10.7554/eLife.46057
  14. Singh, R.K.; Fan, J.; Gioacchini, N.; Watanabe, S.; Bilsel, O.; Peterson, C.L. Transient Kinetic Analysis of SWR1C-Catalyzed H2A.Z Deposition Unravels the Impact of Nucleosome Dynamics and the Asymmetry of Histone Exchange. Cell Reports, 2019, 27, 374–386.e4. doi: 10.1016/j.celrep.2019.03.035
  15. Gagni, P.; Romanato, A.; Bergamaschi, G.; Bettotti, P.; Vanna, R.; Piotto, C.; Morasso, C.F.; Chiari, M.; Cretich, M.; Gori, A. A self-assembling peptide hydrogel for ultrarapid 3D bioassays. Nanoscale Advances, 2019, 1(2), 490–497. doi: 10.1039/c8na00158h
  16. Doh, J.K.; White, J.D.; Zane, H.K.; Chang, Y.H.; López, C.S.; Enns, C.A.; Beatty, K.E. VIPER is a genetically encoded peptide tag for fluorescence and electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12961–12966. doi: 10.1073/pnas.1808626115
  17. Wu, B.; Zhang, H.; Sun, R.; Peng, S.; Cooperman, B.S.; Goldman, Y.E.; Chen, C. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. Nucleic Acids Research, 2018, 46(18), 9736–9748. doi: 10.1093/nar/gky636
  18. Khor, S.Y.; Vu, M.N.; Pilkington, E.H.; Johnston, A.P.R.; Whittaker, M.R.; Quinn, J.F.; Truong, N.P.; Davis, T.P. Elucidating the Influences of Size, Surface Chemistry, and Dynamic Flow on Cellular Association of Nanoparticles Made by Polymerization-Induced Self-Assembly. Small, 2018, 14(34), e1801702. doi: 10.1002/smll.201801702
  19. Chambre, L.; Degirmenci, A.; Sanyal, R.; Sanyal, A. Multifunctional Nanogels as Theranostic Platforms: Exploiting Reversible and Non-reversible Linkages for Targeting, Imaging and Drug Delivery. Bioconjugate Chemistry, 2018, 29(6), 1885–1896. doi: 10.1021/acs.bioconjchem.8b00085
  20. Robinson, K.J.; Huynh, G.T.; Kouskousis, B.; Fletcher, N.L.; Houston, Z.H.; Thurecht, K.J.; Corrie, S.R. Modified organosilica core-shell nanoparticles for stable pH sensing in biological solutions. ACS Sensors, 2018, 3(5), 967–975. doi: 10.1021/acssensors.8b00034
  21. Gadkari, V.V.; Harvey, S.R.; Raper, A.T.; Chu, W.-T.; Wang, J.; Wysocki, V.H.; Suo, Z. Investigation of sliding DNA clamp dynamics by single-molecule fluorescence, mass spectrometry and structure-based modeling. Nucleic Acids Research, 2018, 46(6), 3103–3118. doi: 10.1093/nar/gky125
  22. Raper, A.T.; Stephenson, A.A.; Suo, Z. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9. Journal of the American Chemical Society, 2018, 140(8), 2971–2984. doi: 10.1021/jacs.7b13047
  23. Jani, S.; Jackson, A.; Davies-Sala, C.; Chiem, K.; Soler-Bistué, A.; Zorreguieta, A.; Tolmasky, M.E. Assessment of External Guide Sequences' (EGS) Efficiency as Inducers of RNase P-Mediated Cleavage of mRNA Target Molecules. Methods in Molecular Biology, 2018, 1737, 89–98. doi: 10.1007/978-1-4939-7634-8_6
  24. Condon, S.G.F.; Mahbuba, D.-A.; Armstrong, C.R.; Díaz-Vázquez, G.; Craven, S.J.; LaPointe, L.M.; Khadria, A.S.; Chadda, R.; Crooks, J.A.; Rangarajan, N.; Weibel, D.B.; Hoskins, A.A.; Robertson, J.L.; Cui, Q.; Senes, A. The FtsLB sub-complex of the bacterial divisome is tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. Journal of Biological Chemistry, 2018, 293(5), 1623–1641. doi: 10.1074/jbc.RA117.000426
  25. Deyaert, E.; Wauters, L.; Guaitoli, G.; Konijnenberg, A.; Leemans, M.; Terheyden, S.; Petrovic, A.; Gallardo, R.; Nederveen-Schippers, L.M.; Athanasopoulos, P.S.; Pots, H.; Van Haastert, P.J.M.; Sobott, F.; Gloeckner, C.J.; Efremov, R.; Kortholt, A.; Versées, W. A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover. Nature Communications, 2017, 8(1), 1008. doi: 10.1038/s41467-017-01103-4
  26. Baranova, N.; Loose, M. Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers. Methods in Cell Biology, 2017, 137, 355–370. doi: 10.1016/bs.mcb.2016.03.036
  27. Zhang, Z.; Yomo, D.; Gradinaru, C. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment. Biochimica et Biophysica Acta – Biomembranes, 2017, 1859(7), 1242–1253. doi: 10.1016/j.bbamem.2017.04.001
  28. Chen, L.; Weinmeister, R.; Kralovicova, J.; Eperon, L.P.; Vorechovsky, I.; Hudson, A.J.; Eperon, I.C. Stoichiometries of U2AF35, U2AF65 and snRNP reveal new early spliceosome assembly pathways. Nucleic Acids Research, 2017, 45(4), 2051–2067. doi: 10.1093/nar/gkw860
  29. Hinde, E.; Thammasiraphop, K.; Duong, H.T.T.; Yeow, J.; Karagoz, B.; Boyer, C.; Gooding, J.J.; Gaus, K. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nature Nanotechnology, 2017, 12(1), 81–89. doi: 10.1038/nnano.2016.160
  30. Sahle, F.F.; Giulbudagian, M.; Bergueiro, J.; Lademann, J.; Calderón, M. Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale, 2017, 9(1), 172–182. doi: 10.1039/c6nr06435c
  31. Qiu, Y.; Levendosky, R.F.; Chakravarthy, S.; Patel, A.; Bowman, G.D.; Myong, S. The Chd1 Chromatin Remodeler Shifts Nucleosomal DNA Bidirectionally as a Monomer. Molecular Cell, 2017, 68(1), 76–88.e6. doi: 10.1016/j.molcel.2017.08.018
  32. Jackson, A.; Jani, S.; Sala, C.D.; Soler-Bistué, A.J.C.; Zorreguieta, A.; Tolmasky, M.E. Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: a methodology for inhibition of expression of antibiotic resistance genes. Biology Methods and Protocols, 2016, 1(1), bpw001. doi: 10.1093/biomethods/bpw001
  33. Yoshimura, T.; Kurogi, K.; Liu, M.-C.; Suiko, M.; Sakakibara, Y. A proteomic approach for the analysis of S-nitrosylated proteins using a fluorescence labeling technique. Journal of Electrophoresis, 2016, 60(1), 5–14. doi: 10.2198/jelectroph.60.5
  34. Xue, C.; Whitis, N.R.; Sashital, D.G. Conformational Control of Cascade Interference and Priming Activities in CRISPR Immunity. Molecular Cell, 2016, 64(4), 826–834. doi: 10.1016/j.molcel.2016.09.033
  35. Kollarigowda, R.H.; De Santo, I.; Rianna, C.; Fedele, C.; Manikas, A.C.; Cavalli, S.; Netti, P.A. Shedding light on azopolymer brush dynamics by fluorescence correlation spectroscopy. Soft Matter, 2016, 12(34), 7102–7111. doi: 10.1039/c6sm01482h
  36. Chadda, R.; Krishnamani, V.; Mersch, K.; Wong, J.; Brimberry, M.; Chadda, A.; Kolmakova-Partensky, L.; Friedman, L.J.; Gelles, J.; Robertson, J.L. The dimerization equilibrium of a ClC Cl/H+ antiporter in lipid bilayers. eLIFE, 2016, 5, e17438. doi: 10.7554/eLife.17438
  37. Zhao, Y.; Wei, Z.; Zhao, H.; Jia, J.; Chen, Z.; Zhang, S.; Ouyang, Z.; Ma, X.; Zhang, X. In situ Ion-Transmission Mass Spectrometry for Paper-Based Analytical Devices. Analytical Chemistry, 2016, 88(22), 10805–10810. doi: 10.1021/acs.analchem.6b03272
  38. Noriega, R.; Finley, D.T.; Haberstroh, J.; Geissler, P.L.; Francis, M.B.; Ginsberg, N.S. Manipulating Excited-State Dynamics of Individual Light-Harvesting Chromophores through Restricted Motions in a Hydrated Nanoscale Protein Cavity. The Journal of Physical Chemistry B, 2015, 119(23), 6963–6973. doi: 10.1021/acs.jpcb.5b03784
  39. Leonard, J.D.; Narlikar, G.J. A Nucleotide-Driven Switch Regulates Flanking DNA Length Sensing by a Dimeric Chromatin Remodeler. Molecular Cell, 2015, 57(5), 850–859. doi: 10.1016/j.molcel.2015.01.008
  40. Popp, M.W. Site-Specific Labeling of Proteins via Sortase: Protocols for the Molecular Biologist. Methods in Molecular Biology, 2015, 1266, 185–198. doi: 10.1007/978-1-4939-2272-7_13
  41. Lipchik, A.M.; Perez, M.; Cui, W.; Parker, L.L. Multicolored, Tb3+-Based Antibody-Free Detection of Multiple Tyrosine Kinase Activities. Analytical Chemistry, 2015, 87(15), 7555–7558. doi: 10.1021/acs.analchem.5b02233
  42. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  43. Damayanti, N.P.; Parker, L.L.; Irudayaraj, J.M.K. Fluorescence Lifetime Imaging of Biosensor Peptide Phosphorylation in Single Live Cells. Angewandte Chemie International Edition, 2013, 52(14), 3931-3934. doi: 10.1002/anie.201209303
  44. Hartley, M.D.; Schneggenburger, P.E.; Imperiali, B. Lipid bilayer nanodisc platform for investigating polyprenol-dependent enzyme interactions and activities. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(52), 20863-20870. doi: 10.1073/pnas.1320852110

Cyanine5.5 DBCO

  1. Fornasier, M.; Porcheddu, A.; Casu, A.; Raghavan, S.R.; Jönsson, P.; Schillén, K.; Murgia, S. Surface-modified nanoerythrosomes for potential optical imaging diagnostics. Journal of Colloid and Interface Science, 2021, 582, 246–253. doi: 10.1016/j.jcis.2020.08.032
  2. Lim, Y.G.; Kim, H.J.; Kim, J.W.; Park, K. Calcium-binding near-infrared fluorescent nanoprobe for bone tissue imaging. Journal of Industrial and Engineering Chemistry, 2020, 89, 442–447. doi: 10.1016/j.jiec.2020.06.018

Cyanine5.5 NHS ester

  1. Si, Y.; Xu, Y.; Guan, J.; Chen, K.; Kim, S.; Yang, E.S.; Zhou, L.; Liu, X.M. Anti-EGFR antibody-drug conjugate for triple-negative breast cancer therapy. Engineering in Life Sciences, in press. doi: 10.1002/elsc.202000027
  2. Nguyen, H.T.; Phung, C.D.; Tran, T.H.; Pham, T.T.; Pham, L.M.; Nguyen, T.T.; Jeong, J.-H.; Choi, H.-G.; Ku, S.K.; Yong, C.S.; Kim, J.O. Manipulating immune system using nanoparticles for an effective cancer treatment: Combination of targeted therapy and checkpoint blockage miRNA. Journal of Controlled Release, in press. doi: 10.1016/j.jconrel.2020.09.034
  3. Choi, Y.; Han, H.; Jeon, S.; Yoon, H.Y.; Kim, H.; Kwon, I.C.; Kim, K. Deep Tumor Penetration of Doxorubicin-Loaded Glycol Chitosan Nanoparticles Using High-Intensity Focused Ultrasound. Pharmaceutics, 2020, 12(10), 974. doi: 10.3390/pharmaceutics12100974
  4. Lee, J.; Kim, J.-H.; You, D.G.; Kim, S.; Um, W.; Jeon, J.; Kim, C.H.; Joo, H.; Yi, G.-R.; Park, J.H. Cavitation-Inducible Mesoporous Silica-Titania Nanoparticles for Cancer Sonotheranostics. Advanced Healthcare Materials, 2020, 9(19), 2000877. doi: 10.1002/adhm.202000877
  5. Phung, C.D.; Pham, T.T.; Nguyen, H.T.; Nguyen, T.T.; Ou, W.; Jeong, J.-H.; Choi, H.-G.; Ku, S.K.; Yong, C.S.; Kim, J.O. Anti-CTLA-4 Antibody-Functionalized Dendritic Cell-derived Exosomes Targeting Tumor-draining Lymph Nodes for Effective Induction of Antitumor T-cell Responses. Acta Biomaterialia, 2020, 115, 371–382. doi: 10.1016/j.actbio.2020.08.008
  6. Hossian, A.K.M.N.; Jois, S.D.; Jonnalagadda, S.C.; Mattheolabakis, G. Nucleic Acid Delivery with α-Tocopherol-Polyethyleneimine-Polyethylene Glycol Nanocarrier System. International Journal of Nanomedicine, 2020, 15, 6689–6703. doi: 10.2147/IJN.S259724
  7. Kim, D.; Lee, S.S.; Yoo, W.Y.; Moon, H.; Cho, A.; Park, S.Y.; Kim, Y.-S.; Kim, H.R.; Lee, H.J. Combination Therapy with Doxorubicin-Loaded Reduced Albumin Nanoparticles and Focused Ultrasound in Mouse Breast Cancer Xenografts. Pharmaceuticals, 2020, 13(9), 235. doi: 10.3390/ph13090235
  8. Wang, C.; Guan, W.; Chen, R.; Levi-Kalisman, Y.; Xu, Y.; Zhang, L.; Zhou, M.; Xu, G.; Dou, H. Fluorescent glycan nanoparticle-based FACS assays for the identification of genuine drug-resistant cancer cells with differentiation potential. Nano Research, 2020, 13(11), 3110–3122. doi: 10.1007/s12274-020-2981-8
  9. Liu, L.; Xu, Y.; Zhang, P.; You, J.; Li, W.; Chen, Y.; Li, R.; Rui, B.; Dou, H. High-order Assembly Towards Polysaccharide-Based Complex Coacervate Nanodroplets Capable of Targeting Cancer Cells. Langmuir, 2020, 36(29), 8580–8588. doi: 10.1021/acs.langmuir.0c01458
  10. Lim, Y.G.; Kim, H.J.; Kim, J.W.; Park, K. Calcium-binding near-infrared fluorescent nanoprobe for bone tissue imaging. Journal of Industrial and Engineering Chemistry, 2020, 89, 442–447. doi: 10.1016/j.jiec.2020.06.018
  11. Martín-Moreno, A.; Jiménez Blanco, J.L.; Mosher, J.; Swanson, D.R.; García Fernández, J.M.; and Sharma, A.; Ceña, V.; Muñoz-Fernández, M.A. Nanoparticle-Delivered HIV Peptides to Dendritic Cells a Promising Approach to Generate a Therapeutic Vaccine. Pharmaceutics, 2020, 12(7), 656. doi: 10.3390/pharmaceutics12070656
  12. Srinageshwar, B.; Florendo, M.; Clark, B.; Johnson, K.; Munro, N.; Peruzzaro, S.; Antcliff, A.; Andrews, M.; Figacz, A.; Swanson, D.; Dunbar, G.L.; Sharma, A.; Rossignol, J. A Mixed-Surface Polyamidoamine Dendrimer for In Vitro and In Vivo Delivery of Large Plasmids. Pharmaceutics, 2020, 12(7), 619. doi: 10.3390/pharmaceutics12070619
  13. Feng, C.; Ouyang, J.; Tang, Z.; Kong, N.; Liu, Y.; Fu, L.; Ji, X.; Xie, T.; Farokhzad, O.C.; Tao, W. Germanene-Based Theranostic Materials for Surgical Adjuvant Treatment: Inhibiting Tumor Recurrence and Wound Infection. Matter, 2020, 3(1), 127–144. doi: 10.1016/j.matt.2020.04.022
  14. Xu, J.; Guo, J.; Golob-Schwarzl, N.; Haybaeck, J.; Qiu, X.; Hildebrandt, N. Single-measurement multiplexed quantification of microRNAs from human tissue using catalytic hairpin assembly and Förster resonance energy transfer. ACS Sensors, 2020, 5(6), 1768–1776. doi: 10.1021/acssensors.0c00432
  15. Xu, N.; Yang, Y.-F.; Chen, L.; Lin, J. A Ferritin–Albumin–Cu Nanoparticle that Efficaciously Delivers Copper(II) Ions to a Tumor and Improves the Therapeutic Efficacy of Disulfiram. ACS Omega, 2020, 5(18), 10415–10422. doi: 10.1021/acsomega.0c00293
  16. Ko, Y.J.; Lee, J.W.; Kim, H.; Cho, E.; Yang, Y.; Kim, I.-S.; Kim, S.H.; Kwon, I.C. Versatile activatable vSIRPα-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells. Journal of Controlled Release, 2020, 323, 376–386. doi: 10.1016/j.jconrel.2020.04.037
  17. Guo, H.; Song, S.; Dai, T.; Sun, K.; Zhou, G.; Li, M.; Mann, S.; Dou, H. Near-Infrared Fluorescent and Magnetic Resonance Dual-Imaging Coacervate Nanoprobes for Trypsin Mapping and Targeted Payload Delivery of Malignant Tumors. ACS Applied Materials & Interfaces, 2020, 12(15), 17302–17313. doi: 10.1021/acsami.0c03433
  18. Zhong, Y.; Sun, R.; Geng, Y.; Zhou, Q.; Piao, Y.; Xie, T.; Zhou, R.; Shen, Y. N-Oxide polymer-cupric ion nanogels potentiate disulfiram for cancer therapy. Biomaterials Science, 2020, 8(6), 1726–1733. doi: 10.1039/c9bm01841g
  19. Braunová, A.; Chytil, P.; Laga, R.; Šírová, M.; Machová, D.; Parnica, J.; Janoušková, O.; Etrych, T. Polymer nanomedicines based on micelle-forming amphiphilic or water-soluble polymer-doxorubicin conjugates: Comparative study of in vitro and in vivo properties related to the polymer carrier structure, composition, and hydrodynamic properties. Journal of Controlled Release, 2020, 321, 718–733. doi: 10.1016/j.jconrel.2020.03.002
  20. Stokol, T.; Wan, C.; Blakely, R.; Bellat, V.; Law, B. Aldoxorubicin-loaded nanofibers are cytotoxic for canine mammary carcinoma and osteosarcoma cell lines in vitro: A short communication. Research in Veterinary Science, 2020, 128, 86–89. doi: 10.1016/j.rvsc.2019.11.003
  21. Hyun, H.; Yoo, Y.; Kim, S.Y.; Ko, H.S.; Chun, H.J.; Yang, D.H. Optimization of cRGDfK Ligand Concentration on Polymeric Nanoparticles to Maximize Cancer Targeting. Journal of Industrial and Engineering Chemistry, 2020, 81, 178–184. doi: 10.1016/j.jiec.2019.09.006
  22. Sharmah, A.; Kraus, M.; Cutler, S.; Siegel, J.B.; Brady, S.; Guo, T. Toward Development of Fluorescence Quenching-Based Biosensors for Drought Stress in Plants. Analytical Chemistry, 2019, 91(24), 15644–15651. doi: 10.1021/acs.analchem.9b03751
  23. Beldman, T.J.; Malinova, T.S.; Desclos, E.; Grootemaat, A.E.; Misiak, A.L.S.; van der Velden, S.; van Roomen, C.P.A.A.; Beckers, L.; van Veen, H.A.; Krawczyk, P.M.; Hoebe, R.A.; Sluimer, J.C.; Neele, A.E.; de Winther, M.P.J.; van der Wel, N.N.; Lutgens, E.; Mulder, W.J.M.; Huveneers, S.; Kluza, E. Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS Nano, 2019, 13(12), 13759–13774. doi: 10.1021/acsnano.8b08875
  24. Chen, L.; Zeng, D.; Xu, N.; Li, C.; Zhang, W.; Zhu, X.; Gao, Y.; Chen, P.R.; Lin, J. Blood-Brain Barrier- and Blood-Brain Tumor Barrier-Penetrating Peptide-Derived Targeted Therapeutics for Glioma and Malignant Tumor Brain Metastases. ACS Applied Materials & Interfaces, 2019, 11(45), 41889–41897. doi: 10.1021/acsami.9b14046
  25. Saqr, A.; Vakili, M.R.; Huang, Y.-H.; Lai, R.; Lavasanifar, A. Development of Traceable Rituximab-Modified PEO-Polyester Micelles by Postinsertion of PEG-phospholipids for Targeting of B-cell Lymphoma. ACS Omega, 2019, 4(20), 18867–18879. doi: 10.1021/acsomega.9b02910
  26. Xu, C.; Yu, Y.; Sun, Y.; Kong, L.; Yang, C.; Hu, M.; Yang, T.; Zhang, J.; Hu, Q.; Zhang, Z. Transformable Nanoparticle-Enabled Synergistic Elicitation and Promotion of Immunogenic Cell Death for Triple-Negative Breast Cancer Immunotherapy. Advanced Functional Materials, 2019, 29(45), 1905213. doi: 10.1002/adfm.201905213
  27. Chen, X.; Wang, M.; Yang, X.; Wang, Y.; Yu, L.; Sun, J.; Ding, J. Injectable hydrogels for the sustained delivery of a HER2-targeted antibody for preventing local relapse of HER2+ breast cancer after breast-conserving surgery. Theranostics, 2019, 9(21), 6080–6098. doi: 10.7150/thno.36514
  28. Cun, X.; Chen, J.; Li, M.; He, X.; Tang, X.; Guo, R.; Deng, M.; Li, M.; Zhang, Z.; He, Q. Tumor-Associated Fibroblast-Targeted Regulation and Deep Tumor Delivery of Chemotherapeutic Drugs with a Multifunctional Size-Switchable Nanoparticle. ACS Applied Materials & Interfaces, 2019, 11(43), 39545–39559. doi: 10.1021/acsami.9b13957
  29. Akl, M.A.; Kartal-Hodzic, A.; Suutari, T.; Oksanen, T.; Montagner, I.M.; Rosato, A.; Ismael, H.R.; Afouna, M.I.; Caliceti, P.; Yliperttula, M.; Samy, A.M.; Mastrotto, F.; Salmaso, S.; Viitala, T. Real-Time Label-Free Targeting Assessment and in Vitro Characterization of Curcumin-Loaded Poly-lactic-co-glycolic Acid Nanoparticles for Oral Colon Targeting. ACS Omega, 2019, 4(16), 16878–16890. doi: 10.1021/acsomega.9b02086
  30. Bretin, L.; Pinon, A.; Bouramtane, S.; Ouk, C.; Richard, L.; Perrin, M.-L.; Chaunavel, A.; Carrion, C.; Bregier, F.; Sol, V.; Chaleix, V.; Leger, D.Y.; Liagre, B. Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer. Cancers, 2019, 11(10), 1474. doi: 10.3390/cancers11101474
  31. Srinageshwar, B.; Dils, A.; Sturgis, J.; Wedster, A.; Kathirvelu, B.; Baiyasi, S.; Swanson, D.; Sharma, A.; Dunbar, G.L.; Rossignol, J. Surface-Modified G4 PAMAM Dendrimers Cross the Blood-Brain Barrier Following Multiple Tail-Vein Injections in C57BL/6J Mice. ACS Chemical Neuroscience, 2019, 10(9), 4145–4150. doi: 10.1021/acschemneuro.9b00347
  32. Lee, S.H.; Park, O.K.; Kim, J.; Shin, K.; Pack, C.G.; Kim, K.; Ko, G.; Lee, N.; Kwon, S.-H.; Hyeon, T. Deep tumor penetration of drug-loaded nanoparticles by click reaction-assisted immune cell targeting strategy. Journal of the American Chemical Society, 2019, 141(35), 13829–13840. doi: 10.1021/jacs.9b04621
  33. Zhuang, Y.; Yang, X.; Li, Y.; Chen, Y.; Peng, X.; Yu, L.; Ding, J. Sustained Release Strategy Designed for Lixisenatide Delivery to Synchronously Treat Diabetes and Associated Complications. ACS Applied Materials & Interfaces, 2019, 11(33), 29604–29618. doi: 10.1021/acsami.9b10346
  34. Nguyen, H.T.; Byeon, J.H.; Phung, C.D.; Pham, L.M.; Ku, S.K.; Yong, C.S.; Kim, J.O. Method for the Instant In-Flight Manufacture of Black Phosphorus to Assemble [email protected] Nanocomposites for Targeted Photoimmunotherapy. ACS Applied Materials & Interfaces, 2019, 11(28), 24959–24970. doi: 10.1021/acsami.9b04632
  35. Andersen, V.L.; Vinther, M.; Kumar, R.; Ries, A.; Wengel, J.; Nielsen, J.S.; Kjems, J. A self-assembled, modular nucleic acid-based nanoscaffold for multivalent theranostic medicine. Theranostics, 2019, 9(9), 2662–2677. doi: 10.7150/thno.32060
  36. Ha, S.-W.; Hwang, K.; Jin, J.; Cho, A.-S.; Kim, T.Y.; Hwang, S.I.; Lee, H.J.; Kim, C.-Y. Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system. International Journal of Nanomedicine, 2019, 14, 3743–3752. doi: 10.2147/ijn.s193258
  37. Narayanaswamy, V.P.; Duncan, A.P.; LiPuma, J.J.; Wiesmann, W.P.; Baker, S.M.; Townsend, S.M. In Vitro Activity of a Novel Glycopolymer against Biofilms of Burkholderia cepacia Complex Cystic Fibrosis Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2019, 63(6), e00498-19. doi: 10.1128/AAC.00498-19
  38. Li, G.; Lei, Q.; Wang, F.; Deng, D.; Wang, S.; Tian, L.; Shen, W.; Cheng, Y.; Liu, Z. Wu, S. Fluorinated Polymer Mediated Transmucosal Peptide Delivery for Intravesical Instillation Therapy of Bladder Cancer. Small, 2019, 15(25), e1900936. doi: 10.1002/smll.201900936
  39. Gournaris, E.; Park, W.; Cho, S.; Bentrem, D.J.; Larson, A.C.; Kim, D.-H. Near-Infrared Fluorescent Endoscopic Image-guided Photothermal Ablation Therapy of Colorectal Cancer using Dual-modal Gold Nanorods Targeting Tumor Infiltrating Innate Immune Cells in Transgenic TS4 CRE/APCloxΔ468 Mouse Model. ACS Applied Materials & Interfaces, 2019, 11(24), 21353–21359. doi: 10.1021/acsami.9b04186
  40. Kashfi-Sadabad, R.; Gonzalez-Fajardo, L.; Hargrove, D.; Ahmadi, B:, Munteanu, D.; Shahbazmohamadi, S.; Jay, M.; Lu, X. Engineering Multifunctional Gold Decorated Dendritic Mesoporous Silica/Tantalum Oxide Nanoparticles for Intraperitoneal Tumor-Specific Delivery. Particle & Particle Systems Characterization, 2019, 36(4), 1900058. doi: 10.1002/ppsc.201900058
  41. Spinelli, A.; Girelli, M.; Arosio, D.; Polito, L.; Podini, P.; Martino, G.; Seneci, P.; Muzio, L.; Menegon, A. Intracisternal delivery of PEG-coated gold nanoparticles results in high brain penetrance and long-lasting stability. Journal of Nanobiotechnology, 2019, 17, 49. doi: 10.1186/s12951-019-0481-3
  42. Cho, H.-J.; Lee, S.; Park, S.-J.; Lee, Y.-D.; Jeong, K.; Park, J.H.; Lee, Y.-S.; Kim, B.; Jeong, H.-S.; Kim, S. Tumor microenvironment-responsive fluorogenic nanoprobe for ratiometric dual-channel imaging of lymph node metastasis. Colloids and Surfaces B, 2019, 179, 9–16. doi: 10.1016/j.colsurfb.2019.03.047
  43. Guo, J.; Mingoes, C.; Qiu, X.; Hildebrandt, N. Simple, Amplified, and Multiplexed Detection of MicroRNAs Using Time-Gated FRET and Hybridization Chain Reaction. Analytical Chemistry, 2019, 91(4), 3101–3109. doi: 10.1021/acs.analchem.8b05600
  44. Shim, G.; Le, Q.-V.; Suh, J.; Choi, S.; Kim, G.; Choi, H.-G.; Kim, Y.B.; Macgregor, M.B.; Oh, Y.-K. Sequential activation of anticancer therapy triggered by tumor microenvironment-selective imaging. Journal of Controlled Release, 2019, 298, 110–119. doi: 10.1016/j.jconrel.2019.02.012
  45. Chen, Y.; Fan, H.; Xu, C.; Hu, W.; Yu, B. Efficient Cholera Toxin B Subunit-Based Nanoparticles with MRI Capability for Drug Delivery to the Brain Following Intranasal Administration. Macromolecular Bioscience, 2019, 19(2), 1800340. doi: 10.1002/mabi.201800340
  46. Nguyen, H.T.; Soe, Z.C.; Yang, K.Y.; Phung, C.D.; Nguyen, L.T-T.; Jeong, J.-H.; Jin, S.G.; Choi, H.-G.; Ku, S.K.; Yong, C.S.; Kim, J.O. Transferrin-conjugated pH-sensitive platform for effective delivery of porous palladium nanoparticles and paclitaxel in cancer treatment. Colloids and Surfaces, B: Biointerfaces, 2019, 176, 265–275. doi: 10.1016/j.colsurfb.2019.01.010
  47. Zhang, S.; Li, Z.-T.; Liu, M.; Wang, J.-R.; Xu, M.-Q.; Li, Z.-Y.; Duan, X.-C.; Hao, Y.-L.; Zheng, X.-C.; Li, H.; Feng, Z.-H.; Zhang, X. Anti-tumour activity of low molecular weight heparin doxorubicin nanoparticles for histone H1 high-expressive prostate cancer PC-3M cells. Journal of Controlled Release, 2019, 295, 102–117. doi: 10.1016/j.jconrel.2018.12.034
  48. Wang, Z.; Zhang, R.X.; Zhang, T.; He, C.; He, R.; Ju, X.; Wu, X.Y. In Situ Proapoptotic Peptide-Generating Rapeseed Protein-Based Nanocomplexes Synergize Chemotherapy for Cathepsin-B Overexpressing Breast Cancer. ACS Applied Materials & Interfaces, 2018, 10(48), 41056–41069. doi: 10.1021/acsami.8b14001
  49. Shih, F.-Y.; Su, I.-J.; Chu, L.-L.; Lin, X.; Kuo, S.-C.; Hou, Y.-C.; Chiang, Y.-T. Development of Pectin-Type B Gelatin Polyelectrolyte Complex for Curcumin Delivery in Anticancer Therapy. International Journal of Molecular Sciences, 2018, 19, E3625. doi: 10.3390/ijms19113625
  50. Li, L.; Liu, Y.; Li, H.; Guo, X.; He, X.; Geng, S.; Zhao, H.; Peng, X.; Shi, D.; Xiong, B.; Zhou, G.; Zhao, Y.; Zheng, C.; Yang, X. Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization. Theranostics, 2018, 8(22), 6291–6306. doi: 10.7150/thno.28845
  51. Zahid, M.; Feldman, K.S.; Garcia-Borrero, G.; Feinstein, T.N.; Pogodzinski, N.; Xu, X.; Yurko, R.; Czachowski, M.; Wu, Y.L.; Mason, N.S.; Lo, C.W. Cardiac Targeting Peptide, a Novel Cardiac Vector: Studies in Bio-Distribution, Imaging Application, and Mechanism of Transduction. Biomolecules, 2018, 8(4), 147. doi: 10.3390/biom8040147
  52. Bellat, V.; Ting, R.; Southard, T.L.; Vahdat, L.; Molina, H.; Fernandez, J.; Aras, O.; Stokol, T.; Law, B. Functional Peptide Nanofibers with Unique Tumor Targeting and Enzyme-Induced Local Retention Properties. Advanced Functional Materials, 2018, 28(44), 1803969. doi: 10.1002/adfm.201803969
  53. Moon, C.H.; Lee, J.Y.; Kim, E.S.; Park, J.H.; Kim, S.-Y.; Kim, J.Y.; Tchah, H. In vivo biodistribution of topical low molecular weight heparin-taurocholate in a neovascularized mouse cornea. International Journal of Ophthalmology, 2018, 11(9), 1435–1439. doi: 10.18240/ijo.2018.09.01
  54. Lv, J.; He, B.; Yu, J.; Wang, Y.; Wang, C.; Zhang, S.; Wang, H.; Hu, J.; Zhang, Q.; Cheng, Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials, 2018, 182, 167–175. doi: 10.1016/j.biomaterials.2018.08.023
  55. Machová, D.; Koziolová, E.; Chytil, P.; Venclíková, K.; Etrych, T.; Janoušková, O. Nanotherapeutics with suitable properties for advanced anticancer therapy based on HPMA copolymer-bound ritonavir via pH-sensitive spacers. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 141–150. doi: 10.1016/j.ejpb.2018.07.023
  56. Lu, Z.; Huang, F.-Y.; Cao, R.; Tan, G.-H.; Yi, G.; He, N.; Xu, L.; Zhang, L. Intrinsic, cancer cell-selective toxicity of organic photothermal nano-agent: a simple formulation for combined photothermal-chemotherapy of cancer. ACS Applied Materials & Interfaces, 2018, 10(31), 26028–26038. doi: 10.1021/acsami.8b07801
  57. Ruan, S.; Qin, L.; Xiao, W.; Hu, C.; Zhou, Y.; Wang, R.; Sun, X.; Yu, W.; He, Q.; Gao, H. Acid-Responsive Transferrin Dissociation and GLUT Mediated Exocytosis for Increased Blood-Brain Barrier Transcytosis and Programmed Glioma Targeting Delivery. Advanced Functional Materials, 2018, 28(30), 1802227. doi: 10.1002/adfm.201802227
  58. Wu, C.; Li, J.; Wang, W.; Hammond, P.T. Rationally Designed Polycationic Carriers for Potent Polymeric siRNA-Mediated Gene Silencing. ACS Nano, 2018, 12(7), 6504–6514. doi: 10.1021/acsnano.7b08777
  59. Liu, H.-J.; Luan, X.; Feng, H.-Y.; Dong, X.; Yang, S.-C.; Chen, Z.-J.; Cai, Q.-Y.; Lu, Q.; Zhang, Y.; Sun, P.; Zhao, M.; Chen, H.-Z.; Lovell, J.F.; Fang, C. Integrated Combination Treatment Using a "Smart" Chemotherapy and MicroRNA Delivery System Improves Outcomes in an Orthotopic Colorectal Cancer Mode. Advanced Functional Materials, 2018, 28(28), 1801118. doi: 10.1002/adfm.201801118
  60. Chen, J.; Zhou, J.; Gao, Z.; Li, X.; Wang, F.; Duan, X.; Li, G.; Joshi, B.; Kuick, R.D.; Appelman, H.D.; Wang, T. Multiplexed Targeting of Barrett's Neoplasia with a Heterobivalent Ligand: Imaging Study on Mouse Xenograft In Vivo and Human Specimens Ex Vivo. Journal of Medicinal Chemistry, 2018, 61(12), 5323–5331. doi: 10.1021/acs.jmedchem.8b00405
  61. Yang, Y.; Chen, Q.; Li, S.; Ma, W.; Yao, G.; Ren, F.; Cai, Z.; Zhao, P.; Liao, G.; Xiong, J.; Yu, Z. iRGD-Mediated and Enzyme-Induced Precise Targeting and Retention of Gold Nanoparticles for the Enhanced Imaging and Treatment of Breast Cancer. Journal of Biomedical Nanotechnology, 2018, 14(8), 1396–1408. doi: 10.1166/jbn.2018.2592
  62. Chiang, Y.-T.; Lyu, S.-Y.; Wen, Y.-H.; Lo, C.-L. Preparation and Characterization of Electrostatically Crosslinked Polymer-Liposomes in Anticancer Therapy. International Journal of Molecular Sciences, 2018, 19(6), 1615. doi: 10.3390/ijms19061615
  63. Balke, J.; Volz, P.; Neumann, F.; Brodwolf, R.; Wolf, A.; Pischon, H.; Radbruch, M.; Mundhenk, L.; Gruber, A.D.; Ma, N.; Alexiev, U. Visualizing Oxidative Cellular Stress Induced by Nanoparticles in the Subcytotoxic Range Using Fluorescence Lifetime Imaging. Small, 2018, 14(23), 1800310. doi: 10.1002/smll.201800310
  64. Cun, X.; Li, M.; Wang, S.; Wang, Y.; Wang, J.; Lu, Z.; Yang, R.; Tang, X.; Zhang, Z.; He, Q. A size switchable nanoplatform for targeting the tumor microenvironment and deep tumor penetration. Nanoscale, 2018, 10(21), 9935–9948. doi: 10.1039/c8nr00640g
  65. Akentieva, N.P.; Shushanov, S.S. Visualization of Ovarian Cancer Cells with Peptide VEGEGEEGEEY. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 2018, 12(2), 189–198. doi: 10.1134/s1990747818020022
  66. Chen, C.C.; Stark, M.; Baikoghli, M.; Cheng, R.H. Surface Functionalization of Hepatitis E Virus Nanoparticles Using Chemical Conjugation Methods. Journal of Visualized Experiments, 2018, 135, e57020. doi: 10.3791/57020
  67. Wang, H.; Dai, T.; Li, S.; Zhou, S.; Yuan, X.; You, J.; Wang, C.; Mukwaya, V.; Zhou, G.; Liu, G.; Wei, X.; Dou, H. Scalable and cleavable polysaccharide nanocarriers for the delivery of chemotherapy drugs. Acta Biomaterialia, 2018, 72, 206–216. doi: 10.1016/j.actbio.2018.03.024
  68. Li, L.; Wang, C.; Huang, Q.; Xiao, J.; Zhang, Q.; Cheng, Y. A Degradable Hydrogel formed by Dendrimer-encapsulated Platinum Nanoparticle and Oxidized Dextran for Repeated Photothermal Cancer Therapy. Journal of Materials Chemistry B, 2018, 6(16), 2474–2480. doi: 10.1039/C8TB00091C
  69. He, H.; Chen, Y.; Li, Y.; Song, Z.; Zhong, Y.; Zhu, R.; Cheng, J.; Yin, L. Effective and Selective Anti-Cancer Protein Delivery via All-Functions-in-One Nanocarriers Coupled with Visible Light-Responsive, Reversible Protein Engineering. Advanced Functional Materials, 2018, 28(14), 1706710. doi: 10.1002/adfm.201706710
  70. Yang, W.; Cao, Y.; Zhang, Z.; Du, F.; Shi, Y.; Li, X.; Zhang, Q. Targeted delivery of FGF2 to subchondral bone enhanced the repair of articular cartilage defect. Acta Biomaterialia, 2018, 69, 170–182. doi: 10.1016/j.actbio.2018.01.039
  71. Alric, C.; Hervé-Aubert, K.; Aubrey, N.; Melouk, S.; Lajoie, L.; Même, W.; Même, S.; Courbebaisse, Y.; Ignatova, A.A.; Feofanov, A.V.; Chourpa, I.; Allard-Vannier, E. Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes. Journal of Nanobiotechnology, 2018, 16, 18. doi: 10.1186/s12951-018-0341-6
  72. Jasinski, D.L.; Yin, H.; Li, Z.; Guo, P. The Hydrophobic Effect from Conjugated Chemicals or Drugs on in Vivo Biodistribution of RNA Nanoparticles. Human Gene Therapy, 2018, 29(1), 77–86. doi: 10.1089/hum.2017.054
  73. Park, J.; Hwang, S.R.; Choi, J.U.; Alam, F.; Byun, Y. Self-assembled nanocomplex of PEGylated protamine and heparin–suramin conjugate for accumulation at the tumor site. International Journal of Pharmaceutics, 2018, 535(1–2), 38–46. doi: 10.1016/j.ijpharm.2017.10.055
  74. Kim, H.; Shin, K.; Park, O.K.; Choi, D.; Kim, H.D.; Baik, S.; Lee, S.H.; Kwon, S.-H.; Yarema, K.J.; Hong, J.; Hyeon, T.; Hwang, N.S. General and Facile Coating of Single Cells via Mild Reduction. Journal of the American Chemical Society, 2018, 140(4), 1199–1202. doi: 10.1021/jacs.7b08440
  75. Chen, J.; Ding, J.; Wang, Y.; Cheng, J.; Ji, S.; Zhuang, X.; Chen, X. Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors. Advanced Materials, 2017, 29(32), 1701170. doi: 10.1002/adma.201701170
  76. Zhou, Z.; Jafari, M.; Sriram, V.; Kim, J.; Lee, J.-Y.; Ruiz-Torres, S.J.; Waltz, S.E. Delayed Sequential Co-Delivery of Gefitinib and Doxorubicin for Targeted Combination Chemotherapy. Molecular Pharmaceutics, 2017, 14(12), 4551–4559. doi: 10.1021/acs.molpharmaceut.7b00669
  77. Zhou, J.; He, L.; Pang, Z.; Appelman, H.D.; Kuick, R.; Beer, D.G.; Li, M.; Wang, T.D. Identification and validation of FGFR2 peptide for detection of early Barrett's neoplasia. Oncotarget, 2017, 8(50), 87095–87106. doi: 10.18632/oncotarget.19764
  78. Liu, Y.; Ji, X.; Liu, J.; Tong, W.W.L.; Askhatova, D.; Shi, J. Tantalum Sulfide Nanosheets as a Theranostic Nanoplatform for Computed Tomography Imaging-Guided Combinatorial Chemo-Photothermal Therapy. Advanced Functional Materials, 2017, 27(39), 1703261. doi: 10.1002/adfm.201703261
  79. Li, Y.; Han, Z.; Roelle, S.; DeSanto, A.; Sabatelle, R.; Schur, R.; Lu, Z.-R. Synthesis and Assessment of Peptide Gd-DOTA Conjugates Targeting Extradomain B Fibronectin for Magnetic Resonance Molecular Imaging of Prostate Cancer. Molecular Pharmaceutics, 2017, 14(11), 3906–3915. doi: 10.1021/acs.molpharmaceut.7b00619
  80. Xiao, W.; Ruan, S.; Yu, W.; Wang, R.; Hu, C.; Liu, R.; Gao, H. Normalizing tumor vessels to increase the enzyme-induced retention and targeting of gold nanoparticle for breast cancer imaging and treatment. Molecular Pharmaceutics, 2017, 14(10), 3489–3498. doi: 10.1021/acs.molpharmaceut.7b00475
  81. Xu, W.; Ding, J.; Chen, X. Reduction-Responsive Polypeptide Micelles for Intracellular Delivery of Antineoplastic Agent. Biomacromolecules, 2017, 18(10), 3291–3301. doi: 10.1021/acs.biomac.7b00950
  82. Han, Z.; Wu, X.; Roelle, S.; Chen, C.; Schiemann, W.P.; Lu, Z.-R. Targeted gadofullerene for sensitive magnetic resonance imaging and risk-stratification of breast cancer. Nature Communications, 2017, 8, 692. doi: Nature Communications
  83. Machado, Y.; Duinkerken, S.; Hoepflinger, V.; Mayr, M.; Korotchenko, E.; Kurtaj, A.; Pablos, I.; Steiner, M.; Stoecklinger, A.; Lübbers, J.; Schmid, M.; Ritter, U.; Scheiblhofer, S.; Ablinger, M.; Wally, V.; Hochmann, S.; Raninger, A.M.; Strunk, D.; van Kooyk, Y.; Thalhamer, J.; Weiss, R. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy. Journal of Controlled Release, 2017, 266, 87–99. doi: 10.1016/j.jconrel.2017.09.020
  84. Park, J.; Choi, J.U.; Kim, K.; Byun, Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials, 2017, 147, 145–154. doi: 10.1016/j.biomaterials.2017.09.022
  85. Chen, Z.; Zhai, M.; Xie, X.Y.; Zhang, Y.; Ma, S.; Li, Z.; Yu, F.; Zhao, B.; Zhang, M.; Yang, Y.; Mei, X. Apoferritin Nanocage for Brain Targeted Doxorubicin Delivery. Molecular Pharmaceutics, 2017, 14(9), 3087–3097. doi: 10.1021/acs.molpharmaceut.7b00341
  86. Wang, H.; Chen, J.; Xu, C.; Shi, L.; Tayier, M.; Zhou, J.; Zhang, J.; Wu, J.; Ye, Z.; Fang, T.; Han, W. Cancer Nanomedicines Stabilized by π–π Stacking between Heterodimeric Prodrugs Enable Exceptionally High Drug Loading Capacity and Safer Delivery of Drug Combinations. Theranostics, 2017, 7(15), 3639–3652. doi: 10.7150/thno.20028
  87. Fu, L.; Han, L.; Xie, C.; Li, W.; Lin, L.; Pan, S.; Zhou, Y.; Li, Z.; Jin, M.; Zhang, A. Identification of Extracellular Actin As a Ligand for Triggering Receptor Expressed on Myeloid Cells-1 Signaling. Frontiers in Immunology, 2017, 8, 917. doi: 10.3389/fimmu.2017.00917
  88. Zhou, Z.; Kennell, C.; Jafari, M.; Lee, J.-Y.; Ruiz-Torres, S.J.; Waltz, S.E.; Lee, J.-H. Sequential Delivery of Erlotinib and Doxorubicin for Enhanced Triple Negative Breast Cancer Treatment Using Polymeric Nanoparticle. International Journal of Pharmaceutics, 2017, 530(1–2), 300–307. doi: 10.1016/j.ijpharm.2017.07.085
  89. Tsai, M.-H.; Pan, C.-H.; Peng, C.-L.; Shieh, M.-J. Panitumumab-Conjugated Pt-Drug Nanomedicine for Enhanced Efficacy of Combination Targeted Chemotherapy against Colorectal Cancer. Advanced Healthcare Materials, 2017, 6(13), 1700111. doi: 10.1002/adhm.201700111
  90. Han, S.; Son, H.Y.; Kang, B.; Jang, E.; Ki, J.; Lee, N.G.; Park, J.; Shin, M.-K.; Mun, B.; Min, J.-K.; Haam, S. Fluorescent nanoswitch for monitoring specific pluripotency-related microRNAs of induced pluripotent stem cells: Development of polyethyleneimineoligonucleotide hybridization probes. Nano Research, 2017, 10(8), 2545–2559. doi: 10.1007/s12274-016-1403-4
  91. Xu, X.; Saw, P.E.; Tao, W.; Li, Y.; Ji, X.; Yu, M.; Mahmoudi, M.; Rasmussen, J.; Ayyash, D.; Zhou, Y.; Farokhzad, O.C.; Shi, J. Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy. Nano Letters, 2017, 17(7), 4427–4435. doi: 10.1021/acs.nanolett.7b01571
  92. Ruan, S.; Xiao, W.; Hu, C.; Zhang, H.; Rao, J.; Wang, S.; Wang, X.; He, Q.; Gao, H. Ligand Mediated and Enzyme-Directed Precise Targeting and Retention for Enhanced Treatment of Glioblastoma. ACS Applied Materials & Interfaces, 2017, 9(24), 20348–20360. doi: 10.1021/acsami.7b02303
  93. Zhou, Z.; Yan, Y.; Hu, K.; Zou, Y.; Li, Y.; Ma, R.; Zhang, Q.; Cheng, Y. Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials, 2017, 141, 116–124. doi: 10.1016/j.biomaterials.2017.06.030
  94. Yang, H.Y.; Jang, M.-S.; Li, Y.; Lee, J.H.; Lee, D.S. Multifunctional and Redox-Responsive Self-Assembled Magnetic Nanovectors for Protein Delivery and Dual-Modal Imaging. ACS Applied Materials & Interfaces, 2017, 9(22), 19184–19192. doi: 10.1021/acsami.7b03747
  95. Sun, W.; Li, L.; Yang, Q.-Q.; Zhang, Z.-R.; Huang, Y. Two birds, one stone: dual targeting of the cancer cell surface and subcellular mitochondria by the galectin-3-binding peptide G3-C12. Acta Pharmacologica Sinica, 2017, 38(6), 806–822. doi: 10.1038/aps.2016.137
  96. Lee, Y.; Kischuk, E.; Crist, S.; Ratliff, T.L.; Thompson, D.H. Targeting and Internalization of Liposomes by Bladder Tumor Cells Using a Fibronectin Attachment Protein-Derived Peptide–Lipopolymer Conjugate. Bioconjugate Chemistry, 2017, 28(5), 1481–1490. doi: 10.1021/acs.bioconjchem.7b00153
  97. Zhang, K.; Zhang, Y.; Li, Z.; Li, N.; Feng, N. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: optimization, characterization, and evaluation in vitro and in vivo. International Journal of Nanomedicine, 2017, 12, 3521–3532. doi: 10.2147/ijn.s135749
  98. Lee, J.Y.; Kim, S.E.; Yun, Y.-P.; Choi, S.-W.; Jeon, D.-I.; Kim, H.-J.; Park, K.; Song, H.-R. Osteogenesis and new bone formation of alendronate-immobilized porous PLGA microspheres in a rat calvarial defect model. Journal of Industrial and Engineering Chemistry, 2017, 52, 277–286. doi: 10.1016/j.jiec.2017.03.057
  99. Balasso, A.; Salmaso, S.; Pontisso, P.; Rosato, A.; Quarta, S.; Malfanti, A.; Mastrotto, F.; Caliceti, P. Re-programming pullulan for targeting and controlled release of doxorubicin to the hepatocellular carcinoma cells. European Journal of Pharmaceutical Sciences, 2017, 103, 104–115. doi: 10.1016/j.ejps.2017.02.016
  100. Yang, X.; Wang, Z.; Xiang, Z.; Li, D.; Hu, Z.; Cui, W.; Geng, L.; Fang, Q. Peptide probes derived from pertuzumab by molecular dynamics modeling for HER2 positive tumor imaging. PLoS Computational Biology, 2017, 13(4), e1005441. doi: 10.1371/journal.pcbi.1005441
  101. Han, Z.; Li, Y.; Roelle, S.; Zhou, Z.; Liu, Y.; Sabatelle, R.; DeSanto, A.; Yu, X.; Zhu, H.; Magi-Galluzzi, C.; Lu, Z.-R. A Targeted Contrast Agent Specific to an Oncoprotein in Tumor Microenvironment with the Potential for Detection and Risk Stratification of Prostate Cancer with MRI. Bioconjugate Chemistry, 2017, 28(4), 1031–1040. doi: 10.1021/acs.bioconjchem.6b00719
  102. Taskova, M.; Uhd, J.; Miotke, L.; Kubit, M.; Bell, J.; Ji, H.P.; Astakhova, K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Analytical Chemistry, 2017, 89(8), 4363–4366. doi: 10.1021/acs.analchem.7b00646
  103. Perillo, E.; Hervé-Aubert, K.; Allard-Vannier, E.; Falanga, A.; Galdiero, S.; Chourpa, I. Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis. Journal of Colloid and Interface Science, 2017, 499, 209–217. doi: 10.1016/j.jcis.2017.03.106
  104. Pan, Y.; Ren, X.; Wang, S.; Li, X.; Luo, X.; Yin, Z. Annexin V-Conjugated Mixed Micelles as a Potential Drug Delivery System for Targeted Thrombolysis. Biomacromolecules, 2017, 18(3), 865–876. doi: 10.1021/acs.biomac.6b01756
  105. Alqahtani, M.S.; Islam, M.S.; Podaralla, S.; Kaushik, R.S.; Reineke, J.J.; Woyengo, T.; Perumal, O. Food Protein-based Core-Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in-vitro and in-vivo Functional Performance of Zein Nanocarriers. Molecular Pharmaceutics, 2017, 14(3), 757–769. doi: 10.1021/acs.molpharmaceut.6b01017
  106. Mandracchia, D.; Rosato, A.; Trapani, A.; Chlapanidas, T.; Montagner, I.M.; Perteghella, S.; Di Franco, C.; Torre, M.L.; Trapani, G.; Tripodo, G. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13(3), 1245–1254. doi: 10.1016/j.nano.2017.01.001
  107. Zhao, Lei and Chen, Guojun and Li, Jun and Fu, Yingmei and Mavlyutov, Timur A. and Yao, Annie and Nickells, Robert W. and Gong, Shaoqin and Guo, Lian-Wang. An intraocular drug delivery system using targeted nanocarriers attenuates retinal ganglion cell degeneration. Journal of Controlled Release, 2017, 247, 153–166. doi: 10.1016/j.jconrel.2016.12.038
  108. Braunová A.; Kostka, L.; Sivák, L.; Cuchalová, L.; Hvězdová, Z.; Laga, R.; Filippov, S.; Černoch, P.; Pechar, M.; Janoušková, O.; Šírová, M.; Etrych, T. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. Journal of Controlled Release, 2017, 245, 41–51. doi: 10.1016/j.jconrel.2016.11.020
  109. Suarato, G.; Lee, S.-I.; Li, W.; Rao, S.; Khan, T.; Meng, Y.; Shelly, M. Micellar nanocomplexes for biomagnetic delivery of intracellular proteins to dictate axon formation during neuronal development. Biomaterials, 2017, 112, 176–191. doi: 10.1016/j.biomaterials.2016.09.035
  110. Yang, Q.; Wu, L.; Li, L.; Zhou, Z.; Huang, Y. Subcellular co-delivery of two different site-oriented payloads for tumor therapy. Nanoscale, 2017, 9(4), 1547–1558. doi: 10.1039/c6nr08200a
  111. Beldman, T.J.; Senders, M.L.; Alaarg, A.; Perez-Medina, C.; Tang, J.; Zhao, Y.; Fay, F.; Deichmöller, J.; Born, B.; Desclos, E.; van der Wel, N.N.; Hoebe, R.A.; Kohen, F.; Kartvelishvily, E.; Neeman, M.; Reiner, T.; Calcagno, C.; Fayad, Z.A.; de Winther, M.P.J.; Lutgens, E.; Mulder, W.J.M.; Kluza, E. Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano, 2017, 11(6), 5785–5799. doi: 10.1021/acsnano.7b01385
  112. Zhou, Z.; Liu, Y.; Wu, L.; Li, L.; Huang, Y. Enhanced nuclear delivery of anti-cancer drugs using micelles containing releasable membrane fusion peptide and nuclear-targeting retinoic acid. Journal of Materials Chemistry B, 2017, 5(34), 7175–7185. doi: 10.1039/C7TB01177F
  113. Poh, S.; Putt, K.S.; Low, P.S. Folate-targeted dendrimers selectively accumulate at sites of inflammation in mouse models of ulcerative colitis and atherosclerosis. Biomacromolecules, 2017, 18(10), 3082–3088. doi: 10.1021/acs.biomac.7b00728
  114. Cao, T.; Zhou, X.; Zheng, Y.; Sun, Y.; Zhang, J.; Chen, W.; Zhang, J.; Zhou, Z.; Yang, S.-P.; Zhang, Y.; Yang, H.; Wang, M.-W. Chelator-Free Conjugation of 99mTc and Gd3+ to PEGylated Nanographene Oxide for Dual-modality SPECT/MR Imaging of Lymph Nodes. ACS Applied Materials & Interfaces, 2017, 9(49), 42612–42621. doi: 10.1021/acsami.7b14836
  115. Koziolová, E.; Machová, D.; Pola, R.; Janoušková, O.; Chytil, P.; Laga, R.; Filippov, S.K.; Šubr, V.; Etrych, T.; Pechar, M. Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation. Journal of Materials Chemistry B, 2016, 4(47), 7620–7629. doi: 10.1039/C6TB02225A
  116. Yan, Y.; Liu, L.; Xiong, H.; Miller, J.B.; Zhou, K.; Kos, P.; Huffman, K.E.; Elkassih, S.; Norman, J.W.; Carstens, R.; Kim, J.; Minna, J.D.; Siegwart, D.J. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proceedings of the National Academy of Sciences of the U.S.A., 2016, 113(39), E5702–E5710. doi: 10.1073/pnas.1606886113
  117. Cao, T.; You, P.; Zhou, X.; Luo, J.; Xu, X.; Zhou, Z.; Yang, S.; Zhang, Y.; Yang, H.; Wang, M. Visualization of size-dependent tumour retention of PEGylated nanographene oxide via SPECT imaging. Journal of Materials Chemistry B, 2016, 4(39), 6446–6453. doi: 10.1039/c6tb01892k
  118. Ye, Y.; Wang, J.; Hu, Q.; Hochu, G.M.; Xin, H.; Wang, C.; Gu, Z. Synergistic Transcutaneous Immunotherapy Enhances Antitumor Immune Responses through Delivery of Checkpoint Inhibitors. ACS Nano, 2016, 10(9), 8956–8963. doi: 10.1021/acsnano.6b04989
  119. Chen, Y.; Li, Y.; Shen, W.; Li, K.; Yu, L.; Chen, Q.; Ding, J. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Scientific Reports, 2016, 6, 31593. doi: 10.1038/srep31593
  120. Sun, Y.; Hong, S.; Ma, X.; Cheng, K.; Wang, J.; Zhang, Z.; Yang, M.; Jiang, Y.; Hong, X.; Cheng, Z. Recyclable Cu(I)/Melanin Dots for Cycloadditions, Bioconjugation and Cell Labeling. Chemical Science, 2016, 7(9), 5888–5892. doi: 10.1039/c6sc01536k
  121. Jiang, X.; Bugno, J.; Hu, C.; Yang, Y.; Herold, T.; Qi, J.; Chen, P.; Gurbuxani, S.; Arnovitz, S.; Strong, J.; Ferchen, K.; Ulrich, B.; Weng, H.; Wang, Y.; Huang, H.; Li, S.; Neilly, M.B.; Larson, R.A.; Le Beau, M.M.; Bohlander, S.K.; Jin, J.; Li, Z.; Bradner, J.E.; Hong, S.; Chen, J. Eradication of acute myeloid leukemia with FLT3 ligand-targeted miR-150 nanoparticles. Cancer Research, 2016, 76(15), 4470–4480. doi: 10.1158/0008-5472.CAN-15-2949
  122. Zhang, Y.; Li, Z.; Zhang, K.; Yang, G.; Wang, Z.; Zhao, J.; Hu, R.; Feng, N. Ethyl oleate-containing nanostructured lipid carriers improve oral bioavailability of trans-ferulic acid ascompared with conventional solid lipid nanoparticles. International Journal of Pharmaceutics, 2016, 511(1), 57–64. doi: 10.1016/j.ijpharm.2016.06.131
  123. Wang, C.; Wang, X.; Dong, K.; Luo, J.; Zhang, Q.; Cheng, Y. Injectable and Responsively Degradable Hydrogel for Personalized Photothermal Therapy. Biomaterials, 2016, 104, 129–137. doi: 10.1016/j.biomaterials.2016.07.013
  124. Kim, K.-M.; Kim, M.K.; Paek, H.-J.; Choi, S.-J.; Oh, J.-M. Stable fluorescence conjugation of ZnO nanoparticles and their size dependent cellular uptake. Colloids and Surfaces B: Biointerfaces, 2016, 145, 870–877. doi: 10.1016/j.colsurfb.2016.06.006
  125. Geng, L.; Wang, Z.; Jia, X.; Han, Q.; Xiang, Z.; Li, D.; Yang, X.; Zhang, D.; Bu, X.; Wang, W.; Hu, Z.; Fang, Q. HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery. Theranostics, 2016, 6(8), 1261–1273. doi: 10.7150/thno.14302
  126. Yang, Q.; Li, L.; Sun, W.; Zhou, Z.; Huang, Y. Dual Stimuli-Responsive Hybrid Polymeric Nanoparticles Self-Assembled from POSS-Based Star-Like Copolymer-Drug Conjugates for Efficient Intracellular Delivery of Hydrophobic Drugs. ACS Applied Materials & Interfaces, 2016, 8(21), 13251–13261. doi: 10.1021/acsami.6b02403
  127. Brinkman, A.M.; Chen, G.; Wang, Y.; Hedman, C.J.; Sherer, N.M.; Havighurst, T.C.; Gong, S.; Xu, W. Aminoflavone-Loaded EGFR-Targeted Unimolecular Micelle Nanoparticles Exhibit Anti-Cancer Effects in Triple Negative Breast Cancer. Biomaterials, 2016, 101, 20–31. doi: 10.1016/j.biomaterials.2016.05.041
  128. Bygd, H.C.; Bratlie, K.M. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport. Journal of Biomedical Materials Research, 2016, 104(7), 1707–1719. doi: 10.1002/jbm.a.35700
  129. Zhao, L.; Yuan, W.; Ang, C.Y.; Qu, Q.; Dai, Y.; Gao, Y.; Luo, Z.; Wang, J.; Chen, H.; Li, M.; Li, F.; Zhao, Y. Silica-Polymer Hybrid with Self-Assembled PEG Corona Excreted Rapidly via a Hepatobiliary Route. Advanced Functional Materials, 2016, 26(18), 3036–3047. doi: 10.1002/adfm.201505155
  130. Al-Hilal, T.A.; Chung, S.W.; Choi, J.U.; Alam, F.; Park, J.; Kim, S.W.; Kim, S.Y.; Ahsan, F.; Kim, I.-S.; Byun, Y. Targeting prion-like protein doppel selectively suppresses tumor angiogenesis. Journal of Clinical Investigation, 2016, 126(4), 1251–1266. doi: 10.1172/JCI83427
  131. Jiang, X.; Hu, C.; Arnovitz, S.; Bugno, J.; Yu, M.; Zuo, Z.; Chen, P.; Huang, H.; Ulrich, B.; Gurbuxani, S.; Weng, H.; Strong, J.; Wang, Y.; Li, Y.; Salat, J.; Li, S.; Elkahloun, A.G.; Yang, Y.; Neilly, M.B.; Larson, R.A.; Le Beau, M.M.; Herold, T.; Bohlander, S.K.; Liu, P.P.; Zhang, J.; Li, Z.; He, C.; Jin, J.; Hong, S.; Chen, J.;. miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nature Communications, 2016, 7, 11452. doi: 10.1038/ncomms11452
  132. Kim, J.B.; Park, K.; Ryu, Ji.; Lee, J.J.; Lee, M.W.; Cho, H.S.; Nam, H.S.; Park, O.K.; Song, J.W.; Kim, T.S.; Oh, D.J.; Gweon, D.; Oh, W.-Y.; Yoo, H.; Kim, J.W. Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors. Scientific Reports, 2016, 6, 22608. doi: 10.1038/srep22608
  133. Cai, X.; Jin, R.; Wang, J.; Yue, D.; Jiang, Q.; Wu, Y.; Gu, Z. Bioreducible Fluorinated Peptide Dendrimers Capable of Circumventing Various Physiological Barriers for Highly Efficient and Safe Gene Delivery. ACS Applied Materials & Interfaces, 2016, 8(9), 5821–5832. doi: 10.1021/acsami.5b11545
  134. Ma, G.; Zhao, Z.; Liu, H. Yeast Cells Encapsulating Polymer Nanoparticles as Trojan Particles via in Situ Polymerization inside Cells. Macromolecules, 2016, 49(5), 1545–1551. doi: 10.1021/acs.macromol.6b00016
  135. Rabinsky, E.F.; Joshi, B.P.; Pant, A.; Zhou, J.; Duan, X.; Smith, A.; Kuick, R.; Fan, S.; Nusrat, A.; Owens, S.R.; Appelman, H.D.; Wang, T.D. Overexpressed claudin-1 can be endoscopically visualized in colonic adenomas in vivo. CMGH Cellular and Molecular Gastroenterology and Hepatology, 2016, 2(2), 222–237. doi: 10.1016/j.jcmgh.2015.12.001
  136. Joshi, B.P.; Zhou, J.; Pant, A.; Duan, X.; Zhou, Q.; Kuick, R.; Owens, S.R.; Appelman, H.; Wang, T.D. Design and Synthesis of Near-Infrared Peptide for in Vivo Molecular Imaging of HER2. Bioconjugate Chemistry, 2016, 27(2), 481–494. doi: 10.1021/acs.bioconjchem.5b00565
  137. Khaliq, N.U.; Park, D.Y.; Lee, J.Y.; Joo, Y.; Oh, K.S.; Kim, J.S.; Kim, J.-S.; Kim, I.-S.; Kwon, I.C.; Yuk, S.H. The multilayer nanoparticles for deep penetration of docetaxel into tumor parenchyma to overcome tumor microenvironment. Colloids and Surfaces B: Biointerfaces, 2016, 146, 833–840. doi: 10.1016/j.colsurfb.2016.07.034
  138. Hu, H.; Li, Y.; Zhou, Q.; Ao, Y.; Yu, C.; Wan, Y.; Xu, H.-B.; Li, Z.; Yang, X. Redox-sensitive hydroxyethyl starch-doxorubicin conjugate for tumor targeted drug delivery. ACS Applied Materials & Interfaces, 2016, 8(45), 30833–30844. doi: 10.1021/acsami.6b11932
  139. Chen, Y.; Luan, J.; Shen, W.; Lei, K.; Yu, L.; Ding, J. Injectable and thermosensitive hydrogel containing liraglutide as a long-acting anti-diabetic system. ACS Applied Materials & Interfaces, 2016, 8(45), 30703–30713. doi: 10.1021/acsami.6b09415
  140. Alam, F.; Chung, S.W.; Hwang, S.R.; Kim, J.-y.; Park, J.; Moon, H.T.; Byun, Y. Preliminary safety evaluation of a taurocholate-conjugated low-molecular-weight heparin derivative (LHT7): a potent angiogenesis inhibitor. Journal of Applied Toxicology, 2015, 35(1), 104–115. doi: 10.1002/jat.2995
  141. Wang, H.; Li, D.; Liu, S.; Liu, R.; Yuan, H.; Krasnoperov, V.; Shan, H.; Conti, P.S.; Gill, P.S.; Li, Z. Small-Animal PET Imaging of Pancreatic Cancer Xenografts Using a 64Cu-Labeled Monoclonal Antibody, MAb159. Journal of Nuclear Medicine, 2015, 56(6), 908–913. doi: 10.2967/jnumed.115.155812
  142. Zhou, B.; Wang, H.; Liu, R.; Wang, M.; Deng, H.; Giglio, B.; Gill, P.S.; Shan, H.; Li, Z. PET Imaging of Dll4 Expression in Glioblastoma and Colorectal Cancer Xenografts Using 64Cu-Labeled Monoclonal Antibody 61B. Molecular Pharmaceutics, 2015, 12(10), 3527–3534. doi: 10.1021/acs.molpharmaceut.5b00105
  143. Geng, L.; Wang, Z.; Yang, X.; Li, D.; Lian, W.; Xiang, Z.; Wang, W.; Bu, X.; Lai, W.; Hu, Z.; Fang, Q. Structure-based Design of Peptides with High Affinity and Specificity to HER2 Positive Tumors. Theranostics, 2015, 5(10), 1154–1165. doi: 10.7150/thno.12398
  144. Chung, S.W.; Lee, B.S. Choi, J.U.; Kim, S.W.; Kim, I.-S.; Kim, S.Y.; Byun, Y. Optimization of a stable linker involved DEVD peptide-doxorubicin conjugate that is activated upon radiation-induced caspase-3-mediated apoptosis. Journal of Medicinal Chemistry, 2015, 58(16), 6435–6447. doi: 10.1021/acs.jmedchem.5b00420
  145. Li, L.; Sun, W.; Zhong, J.; Yang, Qi.; Zhu, X.; Zhou, Z.; Zhang Z.; Huang, Y. Multistage Nanovehicle Delivery System Based on Stepwise Size Reduction and Charge Reversal for Programmed Nuclear Targeting of Systemically Administered Anticancer Drugs. Advanced Functional Materials, 2015, 25(26), 4101–4113. doi: 10.1002/adfm.201501248
  146. Zhou, J.; Joshi, B.P.; Duan, X.; Pant, A.; Qiu, Z.; Kuick, R.; Owens, S.R.; Wang, T.D. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clinical and Translational Gastroenterology, 2015, 6, e101. doi: 10.1038/ctg.2015.28
  147. Arami, H.; Khandhar, A.P.; Tomitaka, A.; Yu, E.; Goodwill, P.W.; Conolly, S.M.; Krishnan, K.M. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials, 2015, 52, 251–261. doi: 10.1016/j.biomaterials.2015.02.040
  148. Mahoney, D.; Owens, E.A.; Fan, C.; Hsiang, J.-C.; Henary, M.; Dickson, R.M. Tailoring Cyanine Dark States for Improved Optically Modulated Fluorescence Recovery. The Journal of Physical Chemistry B, 2015, 119(13), 4637–4643. doi: 10.1021/acs.jpcb.5b00777
  149. Bygd, H.C.; Forsmark, K.D.; Bratlie, K.M. Altering in vivo macrophage responses with modified polymer properties. Biomaterials, 2015, 56, 187–197. doi: 10.1016/j.biomaterials.2015.03.042
  150. Hou, Z.; Lin, J.; Li, Y.; Guo, F.; Yu, F.; Wu, H.; Fan, Z.; Zhi, L.; Luo, F. Validation of a dual role of methotrexate-based chitosan nanoparticles in vivo. RSC Advances, 2015, 5(52), 41393–41400. doi: 10.1039/c5ra03705K
  151. Ruan, S.; He, Q.; Gao, H. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale, 2015, 7, 9487–9496. doi: 10.1039/c5nr01408e
  152. Kim, M.-G.; Park, J.Y.; Miao, W.; Lee, J.; Oh, Y.-K. Polyaptamer DNA nanothread-anchored, reduced graphene oxide nanosheets for targeted delivery. Biomaterials, 2015, 48, 129–136. doi: 10.1016/j.biomaterials.2015.01.009
  153. Cai, H.; Singh, A.N.; Sun, X.; Peng, F. Synthesis and Characterization of Her2-NLP Peptide Conjugates Targeting Circulating Breast Cancer Cells: Cellular Uptake and Localization by Fluorescent Microscopic Imaging. Journal of Fluorescence, 2015, 25(1), 113–117. doi: 10.1007/s10895-014-1486-9
  154. Yang, Q.; Li, L.; Zhu, X.; Sun, W.; Zhou, Z.; Huang, Y. The impact of the HPMA polymer structure on the targeting performance of the conjugated hydrophobic ligand. RSC Advances, 2015, 5(19), 14858–14870. doi: 10.1039/c4ra16085a
  155. Cai, L.; Dewi, R.E.; Heilshorn, S.C. Injectable Hydrogels with In Situ Double Network Formation Enhance Retention of Transplanted Stem Cells. Advanced Functional Materials, 2015, 25(9), 1344–1351. doi: 10.1002/adfm.201403631
  156. Jeong, J.-H. Molecular imaging monitoring of poly(ethylene glycol) conjugated islets for evaluation of islet graft rejection. Archives of Pharmacal Research, 2015, 38(5), 785–790. doi: 10.1007/s12272-014-0412-7
  157. Wang, X.; Huang, S.S.; Heston, W.D.W.; Guo, H.; Wang, B.-C.; Basilion, J.P. Development of Targeted Near-Infrared Imaging Agents for Prostate Cancer. Molecular Cancer Therapeutics, 2014, 13(11), 2595–2606. doi: 10.1158/1535-7163.mct-14-0422
  158. Kim, H.S.; Yoo, H.S. Surface-polymerized biomimetic nanofibrils for the cell-directed association of 3-D scaffolds. Chemical Communications, 2014, 51, 306–309. doi: 10.1039/c4cc06875k
  159. Al-Hilal, T.A.; Alam, F.; Park, J.W.; Kim, K.; Kwon, I.C.; Ryu, G.H.; Byun, Y. Prevention effect of orally active heparin conjugate on cancer-associated thrombosis. Journal of Controlled Release, 2014, 195, 155-161. doi: 10.1016/j.jconrel.2014.05.027
  160. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  161. Hu, S.-H.; Fang, R.-H.; Chen, Y.-W.; Liao, B.-J.; Chen, I.-W.; Chen, S.-Y. Photoresponsive Protein-Graphene-Protein Hybrid Capsules with Dual Targeted Heat-Triggered Drug Delivery Approach for Enhanced Tumor Therapy. Advanced Functional Materials, 2014, 24(26), 4144-4155. doi: 10.1002/adfm.201400080
  162. Lv, S.; Tang, Z.; Li, M.; Lin, J.; Song, W.; Liu, H.; Huang, Y.; Zhang, Y.; Chen, X. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials, 2014, 35(23), 6118-6129. doi: 10.1016/j.biomaterials.2014.04.034
  163. Morton, S.W.; Lee, M.J.; Deng, Z.J.; Dreaden, E.C.; Siouve, E.; Shopsowitz, K.E.; Shah, N.J.; Yaffe, M.B.; Hammond, P.T. A Nanoparticle-Based Combination Chemotherapy Delivery System for Enhanced Tumor Killing by Dynamic Rewiring of Signaling Pathways. Science Signaling, 2014, 7(325), ra44-ra44. doi: 10.1126/scisignal.2005261
  164. Zou, Y.; Li, F.; Hou, W.; Sampath, P.; Zhang, Y.; Thorne, S.H. Manipulating the expression of chemokine receptors enhances delivery and activity of cytokine-induced killer cells. British Journal of Cancer, 2014, 110(8), 1992-1999. doi: 10.1038/bjc.2014.140
  165. Joshi, R.; Feldmann, V.; Koestner, W.; Detje, C.; Gottschalk, S.; Mayer, H.A.; Sauer, M.G.; Engelmann, J. Multifunctional silica nanoparticles for optical and magnetic resonance imaging. Biological Chemistry, 2013, 394(1), 125–135. doi: 10.1515/hsz-2012-0251
  166. Lee, A.; Chin, J.; Park, O.K.; Chung, H.; Kim, J.W.; Yoon, S.-Y.; Park, K. A novel near-infrared fluorescence chemosensor for copper ion detection using click ligation and energy transfer. Chemical Communications, 2013, 49, 5969–5971. doi: 10.1039/c3cc42059k
  167. Morton, S.W.; Herlihy, K.P.; Shopsowitz, K.E.; Deng, Z.J.; Chu, K.S.; Bowerman, C.J.; DeSimone, J.M.; Hammond, P.T. Scalable Manufacture of Built-to-Order Nanomedicine: Spray-Assisted Layer-by-Layer Functionalization of PRINT Nanoparticles. Advanced Materials, 2013, 25(34), 4707-4713. doi: 10.1002/adma.201302025
  168. Tang, H.; Sampath, P.; Yan, X.; Thorne, S.H. Potential for enhanced therapeutic activity of biological cancer therapies with doxycycline combination. Gene Therapy, 2013, 20(7), 770-778. doi: 10.1038/gt.2012.96
  169. Wang, C.; Ravi, S.; Garapati, U.S.; Das, M.; Howell, M.; Mallela, J.; Alwarappan, S.; Mohapatra, S.S.; Mohapatra, S. Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. Journal of Materials Chemistry B, 2013, 1(35), 4396-4396. doi: 10.1039/c3tb20452a
  170. Yuan, H.; Cho, H.; Chen, H.H.; Panagia, M.; Sosnovik, D.E.; Josephson, L. Fluorescent and radiolabeled triphenylphosphonium probes for imaging mitochondria. Chemical Communications, 2013, 49(88), 10361-10363. doi: 10.1039/c3cc45802d
  171. Liu, Z.; Miller, S.J.; Joshi, B.P.; Wang, T.D. In vivo targeting of colonic dysplasia on fluorescence endoscopy with near-infrared octapeptide. Gut, 2012, 62(3), 395-403. doi: 10.1136/gutjnl-2011-301913
  172. Adulnirath, A.; Chung, S.W.; Park, J.; Hwang, S.R.; Kim, J.-Y.; Yang, V.C.; Kim, S.Y.; Moon, H.T.; Byun, Y. Cyclic RGDyk-conjugated LMWH-taurocholate derivative as a targeting angiogenesis inhibitor. Journal of Controlled Release, 2012, 164(1), 8-16. doi: 10.1016/j.jconrel.2012.10.001
  173. Kim, J.-y.; Shim, G.; Choi, H.-w.; Park, J.; Chung, S.W.; Kim, S.; Kim, K.; Chan Kwon, I.; Kim, C.-W.; Kim, S.Y. et al. Tumor vasculature targeting following co-delivery of heparin-taurocholate conjugate and suberoylanilide hydroxamic acid using cationic nanolipoplex. Biomaterials, 2012, 33(17), 4424-4430. doi: 10.1016/j.biomaterials.2012.02.066
  174. Zhou, K.; Liu, H.; Zhang, S.; Huang, X.; Wang, Y.; Huang, G.; Sumer, B.D.; Gao, J. Multicolored pH-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic pH Stimuli. Journal of the American Chemical Society, 2012, 134(18), 7803-7811. doi: 10.1021/ja300176w

Cyanine5.5 alkyne

  1. Mickuté, M.; Nainyté, M.; Vasiliauskaité, L.; Plotnikova, A.; Masevičius, V.; Klimašauskas, S.; Vilkaitis, G. Animal Hen1 2'-O-methyltransferases as tools for 3'-terminal functionalization and labelling of single-stranded RNAs. Nucleic Acids Research, 2018, 46(17), e104. doi: 10.1093/nar/gky514
  2. Yuan, H.; Wilks, M.Q.; Fakhri, G.E.; Normandin, M.D.; Kaittanis, C.; Josephson, L. Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials. PLoS One, 2017, 12(2), e0172722. doi: 10.1371/journal.pone.0172722
  3. Duan, Z.; Zhang, Y.; Zhu, H.; Sun, L.; Cai, H.; Li, B.; Gong, Q.; Gu, Z.; Luo, K. Stimuli-Sensitive Biodegradable and Amphiphilic Block Copolymer-Gemcitabine Conjugates Self-assemble Into a Nanoscale Vehicle for Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9(4), 3474–3486. doi: 10.1021/acsami.6b15232
  4. Shi, Y.; van der Meel, R.; Theek, B.; Oude Blenke, E.; Pieters, E.H.E.; Fens, M.H.A.M.; Ehling, J.; Schiffelers, R.M.; Storm, G.; van Nostrum, C.F.; Lammers, T.; Hennink, W.E. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π–Π Stacking Stabilized Polymeric Micelles. ACS Nano, 2015, 9(4), 3740–3752. doi: 10.1021/acsnano.5b00929

Cyanine5.5 amine

  1. Park, D.J.; Yun, W.S.; Kim, W.C.; Park, J.-E.; Lee, S.H.; Ha, S.; Choi, J.S.; Key, J.; Seo, Y.J. Improvement of stem cell-derived exosome release efficiency by surface modified nanoparticles. Research Square, preprint. doi: 10.21203/rs.3.rs-42143/v1
  2. Saito, E.; Gurczynski, S.J.; Kramer, K.R.; Wilke, C.A.; Miller, S.D.; Moore, B.B.; Shea, L.D. Modulating lung immune cells by pulmonary delivery of antigen-specific nanoparticles to treat autoimmune disease. Science Advances, 2020, 6(42), eabc9317. doi: 10.1126/sciadv.abc9317
  3. Xie, H.; Zhu, H.; Zhou, K.; Wan, J.; Zhang, L.; Yang, Z.; Zhou, L.; Chen, X.; Xu, X.; Zheng, S.; Wang, H. Target-oriented delivery of self-assembled immunosuppressant cocktails prolongs allogeneic orthotopic liver transplant survival. Journal of Controlled Release, 2020, 328, 237–250. doi: 10.1016/j.jconrel.2020.08.043
  4. Lee, S.H.; Park, D.J.; Yun, W.S.; Park, J.-E.; Choi, J.S.; Key, J.; Seo, Y.J. Endocytic trafficking of polymeric clustered superparamagnetic iron oxide nanoparticles in mesenchymal stem cells. Journal of Controlled Release, 2020, 326, 408–418. doi: 10.1016/j.jconrel.2020.07.032
  5. Seo, J.-H.; Lee, S.Y.; Hwang, C.; Yang, M.; Lee, J.; Lee, S.-H.; Cho, H.-J. Multi-layered cellulose nanocrystal system for CD44 receptor-positive tumor-targeted anticancer drug delivery. International Journal of Biological Macromolecules, 2020, 162, 798–809. doi: 10.1016/j.ijbiomac.2020.06.193
  6. Safari, H.; Kelley, W.J.; Saito, E.; Kaczorowski, N.; Carethers, L.; Shea, L.D.; Eniola-Adefeso, O. Neutrophils preferentially phagocytose elongated particles {\textendash} An opportunity for selective targeting in acute inflammatory diseases. Science Advances, 2020, 6(24), eaba1474. doi: 10.1126/sciadv.aba1474
  7. Zhang, E.; Zhukova, V.; Semyonkin, A.; Osipova, N.; Malinovskaya, Y.; Maksimenko, O.; Chernikov, V.; Sokolov, M.; Grigartzik, L.; Sabel, B.A.; Gelperina, S.; Henrich-Noack, P. Release kinetics of fluorescent dyes from PLGA nanoparticles in retinal blood vessels: in vivo monitoring and ex vivo localization. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 150, 131–142. doi: 10.1016/j.ejpb.2020.03.006
  8. Han, W.; Shi, L.; Xie, B.; Wan, J.; Ren, L.; Wang, Y.; Chen, X.; Wang, H. Supramolecular Engineering of Molecular Inhibitors in an Adaptive Cytotoxic Nanoparticle for Synergistic Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12(1), 1707–1720. doi: 10.1021/acsami.9b20178
  9. Maksimenko, O.; Malinovskaya, Y.; Shipulo, E.; Osipova, N.; Razzhivina, V.; Arantseva, D.; Yarovaya, O.; Mostovaya, U.; Khalansky, A.; Fedoseeva, V.; Alekseeva, A.; Vanchugova, L.; Gorshkova, M.; Kovalenko, E.; Balabanyan, V.; Melnikov, P.; Baklaushev, V.; Chekhonin, V.; Kreuter, J.; Gelperina, S. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastomas: Towards the pharmaceutical development. International Journal of Pharmaceutics, 2019, 572, 118733. doi: 10.1016/j.ijpharm.2019.118733
  10. Park, J.; Zhang, Y.; Saito, E.; Gurczynski, S.J.; Moore, B.B.; Cummings, B.J.; Anderson, A.J.; Shea, L.D. Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the U.S.A., 2019, 116(30), 14947–14954. doi: 10.1073/pnas.1820276116
  11. Saito, E.; Kuo, R.; Kramer, K.R.; Gohel, N.; Giles, D.A.; Moore, B.B.; Miller, S.D.; Shea, L.D. Design of biodegradable nanoparticles to modulate phenotypes of antigen presenting cells for antigen-specific treatment of autoimmune disease. Biomaterials, 2019, 222, 119432. doi: 10.1016/j.biomaterials.2019.119432
  12. Diaz-Salmeron, R.; Ponchel, G.; Bouchemal, K. Hierarchically built hyaluronic nano-platelets have symmetrical hexagonal shape, flattened surfaces and controlled size. European Journal of Pharmaceutical Sciences, 2019, 133, 251–263. doi: 10.1016/j.ejps.2019.04.007
  13. Saito, E.; Kuo, R.; Pearson, R.M.; Gohel, N.; Cheung, B.; King, N.J.C.; Miller, S.D.; Shea, L.D. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. Journal of Controlled Release, 2019, 300, 185–196. doi: 10.1016/j.jconrel.2019.02.025
  14. Shim, K.-S.; Kim, H.-J.; Kim, S.E.; Park, K. Simple surface biofunctionalization of biphasic calcium phosphates for improving osteogenic activity and bone tissue regeneration. Journal of Industrial and Engineering Chemistry, 2018, 68, 228–228. doi: 10.1016/j.jiec.2018.07.048
  15. Qiao, R.; Esser, L.; Fu, C.; Zhang, C.; Hu, J.; Ramírez-García, P.; Li, Y.; Quinn, J.F.; Whittaker, M.R.; Whittaker, A.K.; Davis, T.P. Bioconjugation and Fluorescence Labelling of Iron Oxide Nanoparticles Grafted with Bromomaleimide-terminal Polymers. Biomacromolecules, 2018, 19(11), 4423–4429. doi: 10.1021/acs.biomac.8b01282
  16. Lee, S.Y.; Ko, S.-H.; Shim, J.-S.; Kim, D.-D.; Cho, H.-J. Tumor Targeting and Lipid Rafts Disrupting Hyaluronic Acid-Cyclodextrin-Based Nanoassembled Structure for Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10(43), 36628–36640. doi: 10.1021/acsami.8b08243
  17. Zhao, Y.; Fletcher, N.L.; Liu, T.; Gemmell, A.C.; Houston, Z.H.; Blakey, I.; Thurecht, K.J. In vivo therapeutic evaluation of polymeric nanomedicines: effect of different targeting peptides on therapeutic efficacy against breast cancer. Nanotheranostics, 2018, 2(4), 360–370. doi: 10.7150/ntno.27142
  18. Garcia, F.; Rippe, M.; Companhoni, M.V.; Stefanello, T.; Louage, B.; van Herck, S.; Sancey, L.; Coll, J.-L.; De Geest, B.; Nakamura, C.V.; Auzély-Velty, R. A versatile method for the selective core-crosslinking of hyaluronic acid-based nanogels via ketone-hydrazide chemistry: from chemical characterization to in vivo biodistribution. Biomaterials Science, 2018, 6(7), 1754–1763. doi: 10.1039/c8bm00396c
  19. Murata, H.; Carmali, S.; Baker, S.L.; Matyjaszewski, K.; Russell, A.J. Solid-phase synthesis of protein-polymers on reversible immobilization supports. Nature Communications, 2018, 9, 845. doi: 10.1038/s41467-018-03153-8
  20. Park, J.; Hwang, S.R.; Choi, J.U.; Alam, F.; Byun, Y. Self-assembled nanocomplex of PEGylated protamine and heparin–suramin conjugate for accumulation at the tumor site. International Journal of Pharmaceutics, 2018, 535(1–2), 38–46. doi: 10.1016/j.ijpharm.2017.10.055
  21. Park, J.; Choi, J.U.; Kim, K.; Byun, Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials, 2017, 147, 145–154. doi: 10.1016/j.biomaterials.2017.09.022
  22. Duret, D.; Grassin, A.; Henry, M.; Jacquet, T.; Thoreau, F.; Denis-Quanquin, S.; Coll, J.-L.; Boturyn, D.; Favier, A.; Charreyre, M.-T. "Polymultivalent" Polymer-Peptide Cluster Conjugates for an Enhanced Targeting of Cells Expressing αvβ3 Integrins. Bioconjugate Chemistry, 2017, 28(9), 2241–2245. doi: 10.1021/acs.bioconjchem.7b00362
  23. Luo, W.; Wen, G.; Yang, L.; Tang, J.; Wang, J.; Wang, J.; Zhang, S.; Zhang, L.; Ma, F.; Xiao, L.; Wang, Y.; Li, Y. Dual-targeted and pH-sensitive Doxorubicin Prodrug-Microbubble Complex with Ultrasound for Tumor Treatment. Theranostics, 2017, 7(2), 452–465
  24. Yang, X.; Wang, Z.; Zhang, F.; Zhu, G.; Song, J.; Teng, G.-J.; Niu, G.; Chen, X. Mapping Sentinel Lymph Node Metastasis by Dual-probe Optical Imaging. Theranostics, 2017, 7(1), 153–163. doi: 10.7150/thno.17085

Cyanine5.5 azide

  1. Bobrin, V.A.; Lin, Y.; He, J.; Qi, Y.; Gu, W.; Monteiro, M.J. Therapeutic Delivery of Polymeric Tadpole Nanostructures with High Selectivity to Triple Negative Breast Cancer Cells. Biomacromolecules, in press. doi: 10.1021/acs.biomac.0c00302
  2. Yuan, M.; Chen, X.; Sun, Y.; Jiang, L.; Xia, Z:; Ye, K.; Jiang, H.; Yang, B.; Ying, M.; Cao, J.; He, Q. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharmaceutica Sinica B, 2020, 10(8), 1426–1439. doi: 10.1016/j.apsb.2020.03.008
  3. Hellyer, S.D.; Aggarwal, S.; Chen, A.N.; Leach, K.; Lapinsky, D.J.; Gregory, K.J. Development of Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 2 Based on Two Positive Allosteric Modulator Chemotypes. ACS Chemical Neuroscience, 2020, 11(11), 1597–1609. doi: 10.1021/acschemneuro.0c00009
  4. Al-Lawati, H.; Vakili, M.R.; Lavasanifar, A.; Ahmed, S.; Jamali, F. Reduced heart exposure of diclofenac by its polymeric micellar formulation, normalizes CYP- mediated metabolism of arachidonic acid imbalance in adjuvant arthritis rat model: Implications in reduced cardiovascular side effects of diclofenac by ... Molecular Pharmaceutics, 2020, 17(4), 1377–1386. doi: 10.1021/acs.molpharmaceut.0c00069
  5. Al-Lawati, H.; Vakili, M.R.; Lavasanifar, A.; Ahmed, S.; Jamali, F. Delivery and biodistribution of traceable polymeric micellar diclofenac in the rat. Journal of Pharmaceutical Sciences, 2019, 108(8), 2698–2707. doi: 10.1016/j.xphs.2019.03.016
  6. Sun, H.; Yan, L.; Chang, M.Y.Z.; Carter, K.; Zhang, R.; Slyker, L.; Lovell, J.; Wu, Y.; Cheng, C. A multifunctional biodegradable brush polymer-drug conjugate for paclitaxel/gemcitabine co-delivery and tumor imaging. Nanoscale Advances, 2019, 1(7), 2761–2771. doi: 10.1039/c9na00282k
  7. Carniato, F.; Alberti, D.; Lapadula, A.; Martinelli, J.; Isidoro, C.; Crich, S.G.; Tei, L. Multifunctional Gd-based mesoporous silica nanotheranostic for anticancer drug delivery. Journal of Materials Chemistry B, 2019, 7(19), 3143–3152. doi: 10.1039/c9tb00375d
  8. Zhang, H.; Wu, J.; Wu, J.; Fan, Q.; Zhou, J.; Wu, J.; Liu, S.; Zang, J.; Ye, J.; Xiao, M.; Tian, T.; Gao, J. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. Journal of Nanobiotechnology, 2019, 17, 29. doi: 10.1186/s12951-019-0461-7
  9. Sun, H.; Yan, L.; Carter, K.A.; Zhang, J.; Caserto, J.; Lovell, J.F.; Wu, Y.; Cheng, C. Zwitterionic Crosslinked Biodegradable Nanocapsules for Cancer Imaging. Langmuir, 2019, 35(5), 1440–1449. doi: 10.1021/acs.langmuir.8b01633
  10. Stefaniak, J.; Lewis, A.M.; Conole, D.; Galan, S.R.G.; Bataille, C.J.R.; Wynne, G.M.; Castaldi, M.P.; Lundbäck, T.; Russell, A.J.; Huber, K.V.M. Chemical Instability and Promiscuity of Arylmethylidenepyrazolinone-Based MDMX Inhibitors. ACS Chemical Biology, 2018, 13(10), 2849–2854. doi: 10.1021/acschembio.8b00665
  11. Tian, T.; Zhang, H.-X.; He, C.-P.; Fan, S.; Zhu, Y.-L.; Qi, C.; Huang, N.-P.; Xiao, Z.-D.; Lu, Z.-H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137–149. doi: 10.1016/j.biomaterials.2017.10.012
  12. Cho, C.-F.; Wolfe, J.M.; Fadzen, C.M.; Calligaris, D.; Hornburg, K.; Chiocca, E.A.; Agar, N.Y.R.; Pentelute, B.L.; Lawler, S.E. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nature Communications, 2017, 8, 15623. doi: 10.1038/ncomms15623
  13. Li, N.; Cai, H.; Jiang, L.; Hu, J.; Bains, A.; Hu, J.; Gong, Q.; Luo, K.; Gu, Z. Enzyme-Sensitive and Amphiphilic PEGylated Dendrimer-Paclitaxel Prodrug Based Nanoparticles for Enhanced Stability and Anticancer Efficacy. ACS Applied Materials & Interfaces, 2017, 9(8), 6865–6877. doi: 10.1021/acsami.6b15505
  14. Garg, S.M.; Paiva, I.M.; Vakili, M.R.; Soudy, R.; Agopsowicz, K.; Soleimani, A.; Hitt, M.; Kaur, K.; Lavasanifar, A. Traceable PEO-poly(ester) micelles for breast cancer targeting: The effect of core structure and targeting peptide on micellar tumor accumulation. Biomaterials, 2017, 144, 17–29. doi: 10.1016/j.biomaterials.2017.08.001
  15. Sun, Y.; Hong, S.; Ma, X.; Cheng, K.; Wang, J.; Zhang, Z.; Yang, M.; Jiang, Y.; Hong, X.; Cheng, Z. Recyclable Cu(I)/Melanin Dots for Cycloadditions, Bioconjugation and Cell Labeling. Chemical Science, 2016, 7(9), 5888–5892. doi: 10.1039/c6sc01536k
  16. Huang, R.; Conti, P.S.; Chen, K. In Vivo Tumor Angiogenesis Imaging Using Peptide-Based Near-Infrared Fluorescent Probes. Methods in Molecular Biology, 2016, 1444, 73–84. doi: 10.1007/978-1-4939-3721-9_8
  17. Puthenveetil, S.; Musto, S.; Loganzo, F.; Tumey, L.N.; O'Donnell, C.J.; Graziani, E.I. Development of solid-phase site-specific conjugation and its application towards generation of dual labeled antibody and Fab drug conjugates. Bioconjugate Chemistry, 2016, 27(4), 1030–1039. doi: 10.1021/acs.bioconjchem.6b00054
  18. Stone, R.C.; Fellows, B.D.; Qi, B.; Trebatowski, D.; Jenkins, B.; Raval, Y.; Tzeng, T.R.; Bruce, T.F.; Mcnealy, T.; Austin, M.J.; Monson, T.C.; Huber, D.L.; Mefford, O.T. Highly Stable Multi-Anchored Magnetic Nanoparticles for Optical Imaging within Biofilms. Journal of Colloid and Interface Science, 2015, 459, 175–182. doi: 10.1016/j.jcis.2015.08.012
  19. Zhong, J.; Li, L.; Zhu, X.; Guan, S.; Yang, Q.; Zhou, Z.; Zhang, Z.; Huang, Y. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery. Biomaterials, 2015, 65, 43–55. doi: 10.1016/j.biomaterials.2015.06.042
  20. Li, G.; Xing, Y.; Wang, J.; Conti, P.S.; Chen, K. Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide. Amino Acids, 2014, 46(6), 1547-1556. doi: 10.1007/s00726-014-1727-x
  21. Morton, S.W.; Zhao, X.; Quadir, M.A.; Hammond, P.T. FRET-enabled biological characterization of polymeric micelles. Biomaterials, 2014, 35(11), 3489-3496. doi: 10.1016/j.biomaterials.2014.01.027
  22. Chan, L.J.; Smith, C.M.; Chua, B.E.; Lin, F.; Bathgate, R.A.D.; Separovic, F.; Gundlach, A.L.; Hossain, M.A.; Wade, J.D. Synthesis of fluorescent analogs of relaxin family peptides and their preliminary in vitro and in vivo characterization. Frontiers in Chemistry, 2013, 1, Article 30. doi: 10.3389/fchem.2013.00030
  23. Astakhova, I.K.; Wengel, J. Interfacing Click Chemistry with Automated Oligonucleotide Synthesis for the Preparation of Fluorescent DNA Probes Containing Internal Xanthene and Cyanine Dyes. Chemistry - a European Journal, 2013, 19(3), 1112-1122. doi: 10.1002/chem.201202621
  24. Zolotarskaya, O.Y.; Wagner, A.F.; Beckta, J.M.; Valerie, K.; Wynne, K.J.; Yang, H. Synthesis of Water-Soluble Camptothecin-Polyoxetane Conjugates via Click Chemistry. Molecular Pharmaceutics, 2012, 9(11), 3403-3408. doi: 10.1021/mp3005066

Cyanine5.5 carboxylic acid

  1. Phung, C.D.; Le, T.G.; Nguyen, V.H.; Vu, T.T.; Nguyen, H.Q.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. PEGylated-Paclitaxel and Dihydroartemisinin Nanoparticles for Simultaneously Delivering Paclitaxel and Dihydroartemisinin to Colorectal Cancer. Pharmaceutical Research, 2020, 37, 129. doi: 10.1007/s11095-020-02819-7
  2. Alfaifi, A.A.; Heyder, R.S.; Bielski, E.R.; Almuqbil, R.M.; Kavdia, M.; Gerk, P.M.; da Rocha, S.R.P. Megalin-targeting liposomes for placental drug delivery. Journal of Controlled Release, 2020, 324, 366–378. doi: 10.1016/j.jconrel.2020.05.033
  3. Matoori, S.; Mooney, D.J. Near-Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16(20), 2000369. doi: 10.1002/smll.202000369
  4. Joseph, M.K.; Islam, M.S.; Reineke, J.; Hildreth, M.; Woyengo, T.; Pillatzki, A.; Baride, A.; Perumal, O. Intraductal Drug Delivery to the Breast: Effect of Particle size and Formulation on Breast Duct and Lymph Node Retention. Molecular Pharmaceutics, 2020, 17(2), 441–452. doi: 10.1021/acs.molpharmaceut.9b00879
  5. Ou, W.; Jiang, L.; Gu, Y.; Soe, Z.C.; Kim, B.K.; Gautam, M.; Poudel, K.; Pham, L.M.; Phung, C.D.; Chang, J.-H.; Kim, J.R.; Ku, S.K.; Yong, C.S.; Kim, J.O. Regulatory T Cells Tailored with pH-Responsive Liposomes Shape an Immuno-Antitumor Milieu against Tumors. ACS Applied Materials & Interfaces, 2019, 11(40), 36333–36346. doi: 10.1021/acsami.9b11371
  6. Zhao, C.; Liu, A.; Santamaria, C.M.; Shomorony, A.; Ji, T.; Wei, T.; Gordon, A.; Elofsson, H.; Mehta, M.; Yang, R.; Kohane, D.S. Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity. Nature Communications, 2019, 10, 2566. doi: 10.1038/s41467-019-10296-9
  7. Ding, Y.; Liu, J.; Li, X.; Xu, L.; Li, C.; Ma, L.; Liu, J.; Ma, R.; An, Y.; Huang, F.; Liu, Y.; Shi, L. Rational design of drug delivery systems for potential programmable drug release and improved therapeutic effect. Materials Chemistry Frontiers, 2019, 3(6), 1159–1167. doi: 10.1039/c9qm00178f
  8. Islam, M.S.; Reineke, J.; Kaushik, R.S.; Woyengo, T.; Baride, A.; Alqahtani, M.S.; Perumal, O. Bioadhesive Food-Protein Nanoparticles as Pediatric Oral Drug Delivery system. ACS Applied Materials & Interfaces, 2019, 11(20), 18062–18073. doi: 10.1021/acsami.9b00152
  9. Yang, J.; Xu, J.; Gonzalez, R.; Lindner, T.; Kratochwil, C.; Miao, Y. 68Ga-DOTA-GGNle-CycMSHhex targets the melanocortin-1 receptor for melanoma imaging. Science Translational Medicine, 2018, 10(466), eaau4445. doi: 10.1126/scitranslmed.aau4445
  10. Zhang, L.; Yao, M.; Yan, W.; Liu, X.; Jiang, B.; Qian, Z.; Gao, Y.; Lu, X.-J.; Chen, X.; Wang, Q.-L. Delivery of a chemotherapeutic drug using novel hollow carbon spheres for esophageal cancer treatment. International Journal of Nanomedicine, 2017, 12, 6759–6769. doi: 10.2147/IJN.S142916
  11. Liu, M.; Richardson, R.R.; Mountford, S.J.; Zhang, L.; Tempone, M.H.; Herzog, H.; Holliday, N.D.; Thompson, P.E. Identification of a Cyanine-Dye Labelled Peptidic Ligand for Y1R and Y4R, based upon the Neuropeptide Y C-terminal analogue, BVD-15. Bioconjugate Chemistry, 2016, 27(9), 2166–2175. doi: 10.1021/acs.bioconjchem.6b00376
  12. Camerino, M.A.; Liu, M.; Moriya, S.; Kitahashi, T.; Mahgoub, A.; Mountford, S.J.; Chalmers, D.K.; Soga, T.; Parhar, I.S.; Thompson, P.E. Beta amino acid-modified and fluorescently labelled kisspeptin analogues with potent KISS1R activity. Journal of Peptide Science, 2016, 22(6), 406–414. doi: 10.1002/psc.2883
  13. Zhao, Y.; Fay, F.; Hak, S.; Manuel Perez-Aguilar, J.; Sanchez-Gaytan, B.L.; Goode, B.; Duivenvoorden, R.; de Lange Davies, C.; Bjørkøy, A.; Weinstein, H.; Fayad, Z.A.; Pérez-Medina, C.; Mulder, W.J.M. Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nature Communications, 2016, 7, 11221. doi: 10.1038/ncomms11221
  14. Kwok, S.J.J.; Choi, M.; Bhayana, B.; Zhang, X.; Ran, C.; Yun, S.-H. Two-photon excited photoconversion of cyanine-based dyes. Scientific Reports, 2016, 6, 23866. doi: 10.1038/srep23866
  15. Wang, X.; Wang, C.; Zhang, Q.; Cheng, Y. Near Infrared Light-responsive and Injectable Supramolecular Hydrogels for On-demand Drug Delivery. Chemical Communications, 2016, 52, 978–981. doi: 10.1039/c5cc08391e
  16. Kim, K.S.; Park, W.; Hu, J.; Bae, Y.H.; Na, K. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials, 2014, 35(1), 337-343. doi: 10.1016/j.biomaterials.2013.10.004
  17. Lee, B.-S.; Amano, T.; Wang, H.Q.; Pantoja, J.L.; Yoon, C.W.; Hanson, C.J.; Amatya, R.; Yen, A.; Black, K.L.; Yu, J.S. Reactive Oxygen Species Responsive Nanoprodrug to Treat Intracranial Glioblastoma. ACS Nano, 2013, 7(4), 3061-3077. doi: 10.1021/nn400347j

Cyanine5.5 hydrazide

  1. Machado, Y.; Duinkerken, S.; Hoepflinger, V.; Mayr, M.; Korotchenko, E.; Kurtaj, A.; Pablos, I.; Steiner, M.; Stoecklinger, A.; Lübbers, J.; Schmid, M.; Ritter, U.; Scheiblhofer, S.; Ablinger, M.; Wally, V.; Hochmann, S.; Raninger, A.M.; Strunk, D.; van Kooyk, Y.; Thalhamer, J.; Weiss, R. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy. Journal of Controlled Release, 2017, 266, 87–99. doi: 10.1016/j.jconrel.2017.09.020
  2. Zhao, Y.; Wang, Y.; Ran, F.; Cui, Y.; Liu, C.; Zhao, Q.; Gao, Y.; Wang, D.; Wang, S. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Scientific Reports, 2017, 7, 4131. doi: 10.1038/s41598-017-03834-2

Cyanine5.5 maleimide

  1. Galstyan, A.; Chiechi, A.; Korman, A.J.; Sun, T.; Isreal, L.L.; Braubach, O.; Patil, R.; Shatalova, E.; Ljubimov, V.A.; Markman, J.; Grodzinski, Z.; Black, K.L.; Penichet, M.L.; Holler, E.; Ljubimov, A.V.; Ding, H.; Ljubimova, J.Y. Nano immunoconjugates crossing blood-brain barrier activate local brain tumor immune system for glioma treatment. bioRxiv, preprint. doi: 10.1101/466508
  2. Gardinier, T.C.; Turker, M.Z.; Hinckley, J.A.; Katt, W.P.; DomNwachukwu, N.; Woodruff, F.; Hersh, J.; Wang, J.; Cerione, R.A.; Wiesner, U.B. Controlling Surface Chemical Heterogeneities of Ultrasmall Fluorescent Core–Shell Silica Nanoparticles as Revealed by High-Performance Liquid Chromatography. The Journal of Physical Chemistry C, 2019, 123(37), 23246–23254. doi: 10.1021/acs.jpcc.9b06905
  3. Chen, C.; Corry, B.; Huang, L.; Hildebrandt, N. FRET-modulated multi-hybrid nanoparticles for brightness-equalized single-wavelength barcoding. Journal of the American Chemical Society, 2019, 141(28), 11123–11141. doi: 10.1021/jacs.9b03383
  4. Guo, S.; Xiao, X.; Wang, X.; Luo, Q.; Zhu, H.; Zhang, H.; Li, H.; Gong, Q.; Luo, K. Reductive microenvironment responsive gadolinium-based polymers as potential safe MRI contrast agents. Biomaterials Science, 2019, 7(5), 1919–1932. doi: 10.1039/c8bm01103f
  5. Vishnu Vardhan, G.P.; Hema, M.; Sushmitha, C.; Savithri, H.S.; Natraj, U.; Murthy, M.R.N. Development of sesbania mosaic virus nanoparticles for imaging. Archives of Virology, 2019, 164(2), 497–507. doi: 10.1007/s00705-018-4097-y
  6. Zhang, C.; Moonshi, S.S.; Wang, W.; Ta, H.T.; Han, Y.; Han, F.Y.; Peng, H.; Král, P.; Rolfe, B.E.; Gooding, J.J.; Gaus, K.; Whittaker, A.K. High F-Content Perfluoropolyether-Based Nanoparticles for Targeted Detection of Breast Cancer by 19F Magnetic Resonance and Optical Imaging. ACS Nano, 2018, 12(9), 9162–9176. doi: 10.1021/acsnano.8b03726
  7. Chung, S.W.; Choi, J.U.; Cho, Y.S.; Kim, H.R.; Won, T.H.; Dimitrion, P.; Jeon, O.-C.; Kim, S.W.; Kim, I.-S.; Kim, S.Y.; Byun, Y. Self-Triggered Apoptosis Enzyme Prodrug Therapy (STAEPT): Enhancing Targeted Therapies via Recurrent Bystander Killing Effect by Exploiting Caspase-Cleavable Linker. Advanced Science, 2018, 5(7), 1800368. doi: 10.1002/advs.201800368
  8. Cai, H.; Wang, X.; Zhang, H.; Sun, L.; Pan, D.; Gong, Q.; Gu, Z.; Luo, K. Enzyme-sensitive biodegradable and multifunctional polymeric conjugate as theranostic nanomedicine. Applied Materials Today, 2018, 11, 207–218. doi: 10.1016/j.apmt.2018.02.003
  9. Matsuoka, D.; Watanabe, H.; Shimizu, Y.; Kimura, H.; Yagi, Y.; Kawai, R.; Ono, M.; Saji, H. Structure–activity relationships of succinimidyl-Cys-C (O)-Glu derivatives with different near-infrared fluorophores as optical imaging probes for prostate-specific membrane antigen. Bioorganic & Medicinal Chemistry, 2018, 26(9), 2291–2301. doi: 10.1016/j.bmc.2018.03.015
  10. Zhang, C.; Moonshi, S.S.; Han, Y.; Puttick, S.; Peng, H.; Magoling, B.J.A.; Reid, J.C.; Bernardi, S.; Searles, D.J.; Král, P.; Whittaker, A.K. PFPE-Based Polymeric 19F MRI Agents: A New Class of Contrast Agents with Outstanding Sensitivity. Macromolecules, 2017, 50(15), 5953–5963. doi: 10.1021/acs.macromol.7b01285
  11. Masarapu, H.; Patel, B.K.; Chariou, P.L.; Hu, H.; Gulati, N.M.; Carpenter, B.L.; Ghiladi, R.A.; Shukla, S.; Steinmetz, N.F. Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules, 2017, 18(12), 4141–4153. doi: 10.1021/acs.biomac.7b01196
  12. Wilks, M.Q.; Normandin, M.D.; Yuan, H.; Cho, H.; Guo, Y.; Herisson, F.; Ayata, C.; Wooten, D.W.; El Fakhri, G.; Josephson, L. Imaging PEG-Like Nanoprobes in Tumor, Transient Ischemia, and Inflammatory Disease Models. Bioconjugate Chemistry, 2015, 26(6), 1061–1069. doi: 10.1021/acs.bioconjchem.5b00213
  13. Cai, H.; Singh, A.N.; Sun, X.; Peng, F. Synthesis and Characterization of Her2-NLP Peptide Conjugates Targeting Circulating Breast Cancer Cells: Cellular Uptake and Localization by Fluorescent Microscopic Imaging. Journal of Fluorescence, 2015, 25(1), 113–117. doi: 10.1007/s10895-014-1486-9
  14. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  15. Park, S.; Kim, Y.-J.; Jon, S. A high-affinity peptide for nicotinic acetylcholine receptor-α1 and its potential use in pulmonary drug delivery. Journal of Controlled Release, 2014, 192, 141-147. doi: 10.1016/j.jconrel.2014.07.006
  16. Wang, X.; Yang, Y.; Jia, H.; Jia, W.; Miller, S.; Bowman, B.; Feng, J.; Zhan, F. Peptide decoration of nanovehicles to achieve active targeting and pathology-responsive cellular uptake for bone metastasis chemotherapy. Biomaterials Science, 2014, 2(7), 961-971. doi: 10.1039/c4bm00020j
  17. Fan, H.; Zhang, I.; Chen, X.; Zhang, L.; Wang, H.; Da Fonseca, A.; Manuel, E.R.; Diamond, D.J.; Raubitschek, A.; Badie, B. Intracerebral CpG Immunotherapy with Carbon Nanotubes Abrogates Growth of Subcutaneous Melanomas in Mice. Clinical Cancer Research, 2012, 18(20), 5628-5638. doi: 10.1158/1078-0432.ccr-12-1911
  18. Zhao, D.; Alizadeh, D.; Zhang, L.; Liu, W.; Farrukh, O.; Manuel, E.; Diamond, D.J.; Badie, B. Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity. Clinical Cancer Research, 2011, 17(4), 771–782. doi: 10.1158/1078-0432.ccr-10-2444

Cyanine7 DBCO

  1. Islam, M.R.; Nguy, C.; Pandit, S.; Lyon, L.A. Design and Synthesis of Core–Shell Microgels with One‐Step Clickable Crosslinked Cores and Ultralow Crosslinked Shells. Macromolecular Chemistry and Physics, 2020, 221(19), 2000156. doi: 10.1002/macp.202000156
  2. Alberg, I.; Kramer, S.; Schinnerer, M.; Hu, Q.; Seidl, C.; Leps, C.; Drude, N.; Möckel, D.; Rijcken, C.; Lammers, T.; Diken, M.; Maskos, M.; Morsbach, S.; Landfester, K.; Tenzer, S.; Barz, M.; Zentel, R. Polymeric Nanoparticles with Neglectable Protein Corona. Small, 2020, 16(18), 1907574. doi: 10.1002/smll.201907574

Cyanine7 NHS ester

  1. Poreba, M.; Groborz, K.; Rut, W.; Pore, M.; Snipas, S.J.; Vizovisek, M.; Turk, B.; Kuhn, P.; Drag, M.; Salvesen, G.S. The Activome: multiplexed probing of activity of proteolytic enzymes using mass cytometry-compatible activity-based probes (TOF-probes). bioRxiv, preprint. doi: 10.1101/775627
  2. Chen, J.; Guo, Y.; Li, H.; Zhang, C.; Chang, X.; Ma, R.; Cheng, H.; Ye, X.; Cui, H.; Li, Y. Near-infrared dye-labeled antibody COC183B2 enables detection of tiny metastatic ovarian cancer and optimizes fluorescence-guided surgery. Journal of Surgical Oncology, 2020, 122(6), 1207–1217. doi: 10.1002/jso.26130
  3. Kovacs, L.; Cabral, P.; Chammas, R. Mannose receptor 1 expression does not determine the uptake of high-density mannose dendrimers by activated macrophages populations. PloS One, 2020, 15(10), e0240455. doi: 10.1371/journal.pone.0240455
  4. Huang, Y.; Jiang, K.; Zhang, X.; Chung, E.J. The Effect of Size, Charge, and Peptide Ligand Length on Kidney Targeting by Small, Organic Nanoparticles. Bioengineering & Translational Medicine, 2020, 5(3), e10173. doi: 10.1002/btm2.10173
  5. Zhou, Y.; Zhu, X.; Lin, S.; Zhu, C.; Wu, L.; Chen, R.; Chen, Z.; Li, W. A Novel Nanoparticle Preparation to Enhance the Gastric Adhesion and Bioavailability of Xanthatin. International Journal of Nanomedicine, 2020, 15, 5073–5082. doi: 10.2147/IJN.S252049
  6. Crawford, B.; Wang, H.-N.; Strobbia, P.; Zentella, R.; Pei, Z.-M.; Sun, T.-P.; Vo-Dinh, T. Plasmonic Nanobiosensing: from in situ plant monitoring to cancer diagnostics at the point of care. Journal of Physics: Photonics, 2020, 2(3), 034012. doi: 10.1088/2515-7647/ab9714
  7. Mayorova, O.A.; Sindeeva, O.A.; Lomova, M.V.; Gusliakov, O.I.; Tarakanchikova, Y.V.; Tyutyaev, E.V.; Pinyaev, S.I.; Kulikov, O.A.; German, S.V.; Pyataev, N.A.; Gorin, D.A.; Sukhorukov, G.B. Endovascular addressing improves the effectiveness of magnetic targeting of drug carrier. Comparison with the conventional administration method. Nanomedicine, 2020, 28, 102184. doi: 10.1016/j.nano.2020.102184
  8. Strobbia, P.; Odion, R.A.; Maiwald, M.; Sumpf, B.; Vo-Dinh, T. Direct SERDS sensing of molecular biomarkers in plants under field conditions. Analytical and Bioanalytical Chemistry, 2020, 412(14), 3457–3466. doi: 10.1007/s00216-020-02544-5
  9. Pola, R.; Böhmová, E.; Filipová, M.; Pechar, M.; Pankrác, J.; Větvička, D.; Olejár, T.; Kabešová, M.; Poučková, P.; Šefc, L.; Zábrodský, M.; Janoušková, O.; Bouček, J.; Etrych, T. Targeted Polymer-Based Probes for Fluorescence Guided Visualization and Potential Surgery of EGFR-Positive Head-and-Neck Tumors. Pharmaceutics, 2020, 12, 31. doi: 10.3390/pharmaceutics12010031
  10. He, Z.; Nie, T.; Hu, Y.; Zhou, Y.; Zhu, J.; Liu, Z.; Liu, L.; Leong, K.W.; Chen, Y.; Mao, H.-Q. A polyphenol-metal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes. Journal of Controlled Release, 2020, 318, 86–97. doi: 10.1016/j.jconrel.2019.12.014
  11. Zheng, Q.; Fang, Y.; Zeng, L.; Li, X.; Chen, H.; Song, H.; Huang, J.; Shi, S. Cytocompatible cerium oxide-mediated antioxidative stress in inhibiting ocular inflammation-associated corneal neovascularization. Journal of Materials Chemistry B, 2019, 7(43), 6759–6769. doi: 10.1039/c9tb01066a
  12. Xu, C.; Yu, Y.; Sun, Y.; Kong, L.; Yang, C.; Hu, M.; Yang, T.; Zhang, J.; Hu, Q.; Zhang, Z. Transformable Nanoparticle-Enabled Synergistic Elicitation and Promotion of Immunogenic Cell Death for Triple-Negative Breast Cancer Immunotherapy. Advanced Functional Materials, 2019, 29(45), 1905213. doi: 10.1002/adfm.201905213
  13. Poreba, M.; Groborz, K.; Vizovisek, M.; Maruggi, M.; Turk, D.; Turk, B.; Powis, G.; Drag, M.; Salvesen, G.S. Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples. Chemical Science, 2019, 10(36), 8461–8477. doi: 10.1039/c9sc00997c
  14. Broadwater, D.; Bates, M.; Jayaram, M.; Young, M.; He, J.; Raithel, A.L.; Hamann, T.W.; Zhang, W.; Borhan, B.; Lunt, R.R.; Lunt, S.Y. Modulating cellular cytotoxicity and phototoxicity of fluorescent organic salts through counterion pairing. Scientific Reports, 2019, 9, 15288. doi: 10.1038/s41598-019-51593-z
  15. Liu, X.; Ghosh, D. Intracellular nanoparticle delivery by oncogenic KRAS-mediated macropinocytosis. International Journal of Nanomedicine, 2019, 14, 6589–6600. doi: 10.2147/IJN.S212861
  16. Zhang, C.; Ling, X.; Guo, Y.; Yuan, C.; Cheng, H.; Ye, X.; Ma, R.; Zhang, Y.; Li, Y.; Chang, X.; Kong, B.; Liu, T.; Cui, H. Evaluation of COC183B2 antibody targeting ovarian cancer by near-infrared fluorescence imaging. Chinese Journal of Cancer Research, 2019, 31, 673–685. doi: 10.21147/j.issn.1000-9604.2019.04.11
  17. Kretzmann, J.A.; Evans, C.W.; Moses, C.; Sorolla, A.; Kretzmann, A.L.; Wang, E.; Ho, D.; Hackett, M.J.; Dessauvagie, B.F.; Smith, N.M.; Redfern, A.D.; Waryah, C.; Norret, M.; Iyer, K.S.; Blancafort, P. Tumour suppression by targeted intravenous non-viral CRISPRa using dendritic polymers. Chemical Science, 2019, 10(33), 7718–7727. doi: 10.1039/c9sc01432b
  18. Kim, K.-S.; Han, J.-H.; Park, J.-H.; Kim, H.-K.; Choi, S.H.; Kim, G.R.; Song, H.; An, H.J.; Han, D.K.; Park, W.; Park, K.-S. Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics. Biomaterials, 2019, 221, 119418. doi: 10.1016/j.biomaterials.2019.119418
  19. Chen, Y.; Zhao, G.; Wang, S.; He, Y.; Han, S.; Du, C.; Li, S.; Fan, Z.; Wang, C.; Wang, J. Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomaterials Science, 2019, 7(8), 3450–3459. doi: 10.1039/c9bm00599d
  20. Novoselova, M.V.; Voronin, D.V.; Abakumova, T.O.; Demina, P.A.; Petrov, A.V.; Petrov, V.V.; Zatsepin, T.S.; Sukhorukov, G.B.; Gorin, D.A. Focused ultrasound-mediated fluorescence of composite microcapsules loaded with magnetite nanoparticles: In vitro and in vivo study. Colloids and Surfaces. B: Biointerfaces, 2019, 181, 680–687. doi: 10.1016/j.colsurfb.2019.06.025
  21. Huang, C.; Zeng, T.; Li, J.; Tan, L.; Deng, X.; Pan, Y.; Chen, Q.; Li, A.; Hu, J. Folate Receptor-mediated Renal-targeting Nanoplatform for the Specific Delivery of Triptolide to Treat Renal Ischemia/Reperfusion Injury. ACS Biomaterials Science & Engineering, 2019, 5(6), 2877–2886. doi: 10.1021/acsbiomaterials.9b00119
  22. Dahanayake, V.; Pornrungroj, C.; Pablico-Lansigan, M.; Hickling, W.J.; Lyons, T.; Lah, D.; Lee, Y.-C.; Parasido, E.; Bertke, J.A.; Albanese, C.; Rodriguez, O.; Van Keuren, E.; Stoll, S.L. Paramagnetic Clusters of Mn3(O2CCH3)6(Bpy)2 in Polyacrylamide Nanobeads as a New Design Approach to T1-T2 Multi-Modal MRI Contrast Agent. ACS Applied Materials & Interfaces, 2019, 11(20), 18153–18164. doi: 10.1021/acsami.9b03216
  23. Crawford, B.M.; Strobbia, P.; Wang, H.-N.; Zentella, R.; Boyanov, M.; Odion, R.; Pei, Z.-M.; Sun, T.-P.; Kemner, K.M.; Vo-Dinh, T. In vivo nucleic acid detection and imaging within whole plants using plasmonic nanosensors. Advanced Environmental, Chemical, and Biological Sensing Technologies XV (Proceedings SPIE 11007), 2019, 11007, 1100708. doi: 10.1117/12.2524840
  24. Phillips, H.R.; Tolstyka, Z.P.; Hall, B.C.; Hexum, J.K.; Hackett, P.B.; Reineke, T.M. Glycopolycation-DNA Polyplex Formulation N/P Ratio Affects Stability, Hemocompatibility, and in Vivo Biodistribution. Biomacromolecules, 2019, 20(4), 1530–1544. doi: 10.1021/acs.biomac.8b01704
  25. Crawford, B.M.; Strobbia, P.; Wang, H.-N.; Zentella, R.; Boyanov, M.I.; Pei, Z.-M.; Sun, T.-P.; Kemner, K.M.; Vo-Dinh, T. Plasmonic nanoprobes for in vivo multimodal sensing and bioimaging of microRNA within plants. ACS Applied Materials & Interfaces, 2019, 11(8), 7743–7754. doi: 10.1021/acsami.8b19977
  26. Smith, W.J.; Wang, G.; Gaikwad, H.; Vu, V.P.; Groman, E.; Bourne, D.W.A.; Simberg, D. Accelerated Blood Clearance of Antibodies by Nanosized Click Antidotes. ACS Nano, 2018, 12(12), 12523–12532. doi: 10.1021/acsnano.8b07003
  27. Li, W.; Li, Y.; Liu, Z.; Kerdsakundee, N.; Zhang, M.; Zhang, F.; Liu, X.; Bauleth-Ramos, T.; Lian, W.; Mäkilä, E.; Kemell, M.; Ding, Y.; Sarmento, B.; Wiwattanapatapee, R.; Salonen, J.; Zhang, H.; Hirvonen, J.T.; Liu, D.; Deng, X.; Santos, H.A. Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322–332. doi: 10.1016/j.biomaterials.2018.09.024
  28. Besford, Q.A.; Ju, Y.; Wang, T.-Y.; Yun, G.; Cherepanov, P.V.; Hagemeyer, C.E.; Cavalieri, F.; Caruso, F. Self-Assembled Metal-Phenolic Networks on Emulsions as Low-Fouling and pH-Responsive Particles. Small, 2018, 14(39), e1802342. doi: 10.1002/smll.201802342
  29. Etrych, T.; Daumová, L.; Pokorná, E.; Tušková, D.; Lidický, O.; Kolářová, V.; Pankrác, J.; Šefc, L.; Chytil, P.; Klener, P. Effective doxorubicin-based nano-therapeutics for simultaneous malignant lymphoma treatment and lymphoma growth imaging. Journal of Controlled Release, 2018, 289, 44–55. doi: 10.1016/j.jconrel.2018.09.018
  30. Bonnard, T.; Jayapadman, A.; Putri, J.A.; Cui, J.; Ju, Y.; Carmichael, C.; Angelovich, T.A.; Cody, S.H.; French, S.; Pascaud, K.; Pearce, H.A.; Jagdale, S.; Caruso, F.; Hagemeyer, C.E. Low-Fouling and Biodegradable Protein-Based Particles for Thrombus Imaging. ACS Nano, 2018, 12(7), 6988–6996. doi: 10.1021/acsnano.8b02588
  31. Moroz, P.; Jin, Z.; Sugiyama, Y.; Lara, D'A.; Razgoniaeva, N.; Yang, M.; Kholmicheva, N.; Khon, D.; Mattoussi, H.; Zamkov, M. The Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler. ACS Nano, 2018, 12(6), 5657–5665. doi: 10.1021/acsnano.8b01451
  32. Gusliakova, O.; Atochina-Vasserman, E.N.; Sindeeva, O.; Sindeev, S.; Pinyaev, S.; Pyataev, N.; Revin, V.; Sukhorukov, G.B.; Gorin, D.; Gow, A.J. Use of Submicron Vaterite Particles Serves as an Effective Delivery Vehicle to the Respiratory Portion of the Lung. Frontiers in Pharmacology, 2018, 9, 559. doi: 10.3389/fphar.2018.00559
  33. Ashwanikumar, N.; Plaut, J.S.; Mostofian, B.; Patel, S.; Kwak, P.; Sun, C.; McPhail, K.; Zuckerman, D.M.; Esener, S.C.; Sahay, G. Supramolecular self assembly of nanodrill-like structures for intracellular delivery. Journal of Controlled Release, 2018, 282, 76–89. doi: 10.1016/j.jconrel.2018.02.041
  34. Zhang, X.; He, F.; Xiang, K.; Zhang, J.; Xu, M.; Long, P.; Su, H.; Gan, Z.; Yu, Q. CD44-targeted Facile Enzymatic Activatable Chitosan Nanoparticles for Efficient Antitumor Therapy and Reversal of Multidrug Resistance. Biomacromolecules, 2018, 19(3), 883–895. doi: 10.1021/acs.biomac.7b01676
  35. Tal, N.; Rudnick-Glick, S.; Grinberg, I.; Natan, M.; Banin, E.; Margel, S. Engineering of a New Bisphosphonate Monomer and Nanoparticles of Narrow Size Distribution for Antibacterial Applications. ACS Omega, 2018, 3(2), 1458–1469. doi: 10.1021/acsomega.7b01686
  36. Newman, M.R.; Russell, S.G.; Schmitt, C.S.; Marozas, I.A.; Sheu, T.-J.; Puzas, J.E.; Benoit, D.S.W. Multivalent Presentation of Peptide Targeting Groups Alters Polymer Biodistribution to Target Tissues. Biomacromolecules, 2018, 19(1), 71–84. doi: 10.1021/acs.biomac.7b01193
  37. Suleimanov, I.; Gabor, M.; Lionel, S.; Bousseksou, A. Near-infrared luminescence switching in a spin-crossover polymer nanocomposite. European Journal of Inorganic Chemistry, 2017, 28, 3446–3451. doi: 10.1002/ejic.201700426
  38. Wang, Y.; Malcolm, D.W.; Benoit, D.S.W. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials, 2017, 139, 127–138. doi: 10.1016/j.biomaterials.2017.06.001
  39. Zhang, R.; Yang, J.; Radford, D.C.; Fang, Y.; Kopeček, J. FRET Imaging of Enzyme-Responsive HPMA Copolymer Conjugate. Macromolecular Bioscience, 2017, 17(1), 1600125. doi: 10.1002/mabi.201600125
  40. Shen, T.; Xu, X.; Guo, L.; Tang, H.; Diao, T.; Gan, Z.; Zhang, G.; Yu, Q. Efficient Tumor Accumulation, Penetration and Tumor Growth Inhibition Achieved by Polymer Therapeutics: The Effect of Polymer Architectures. Biomacromolecules, 2017, 18(1), 217–230. doi: 10.1021/acs.biomac.6b01533
  41. Kilic, E.; Novoselova, M.V.; Lim, S.H.; Pyataev, N.A.; Pinyaev, S.I.; Kulikov, O.A.; Sindeeva, O.A.; Mayorova, O.A.; Murney, R.; Antipina, M.N.; Haigh, B.; Sukhorukov, G.B.; Kiryukhin, M.V. Formulation for Oral Delivery of Lactoferrin Based on Bovine Serum Albumin and Tannic Acid Multilayer Microcapsules. Scientific Reports, 2017, 7, 44159. doi: 10.1038/srep44159
  42. Beldman, T.J.; Senders, M.L.; Alaarg, A.; Perez-Medina, C.; Tang, J.; Zhao, Y.; Fay, F.; Deichmöller, J.; Born, B.; Desclos, E.; van der Wel, N.N.; Hoebe, R.A.; Kohen, F.; Kartvelishvily, E.; Neeman, M.; Reiner, T.; Calcagno, C.; Fayad, Z.A.; de Winther, M.P.J.; Lutgens, E.; Mulder, W.J.M.; Kluza, E. Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano, 2017, 11(6), 5785–5799. doi: 10.1021/acsnano.7b01385
  43. Rudnick-Glick, S.; Corem-Salkmon, E.; Grinberg, I.; Margel, S. Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol) bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model. Journal of Nanobiotechnology, 2016, 14, 80. doi: 10.1186/s12951-016-0233-6
  44. Xu, X.; Xu, Z.; Liu, J.; Zhang, Z.; Chen, H.; Li, X.; Shi, S. Visual tracing of diffusion and biodistribution for amphiphilic cationic nanoparticles using photoacoustic imaging after ex vivo intravitreal injections. International Journal of Nanomedicine, 2016, 11, 5079–5086. doi: 10.2147/IJN.S109986
  45. Gera, L.; Charest-Morin, X.; Jean, M.; Bachelard, H.; Marceau, F. Infrared-emitting, peptidase-resistant fluorescent ligands of the bradykinin B2 receptor: application to cytofluorometry and imaging. BMC Research Notes, 2016, 9, 452. doi: 10.1186/s13104-016-2258-1
  46. Zhao, L.; Ma, S.; Pan, Y.; Zhang, Q.; Wang, K.; Song, D.; Wang, X.; Feng, G.; Liu, R.; Xu, H.; Zhang, J.; Qiao, M.; Kong, D. Functional Modification of Fibrous PCL Scaffolds with Fusion Protein VEGF-HGFI Enhanced Cellularization and Vascularization. Advanced Healthcare Materials, 2016, 5(18), 2376–2385. doi: 10.1002/adhm.201600226
  47. Sui, B.; Zhong, G.; Sun, J. Drug-loadable Mesoporous Bioactive Glass Nanospheres: Biodistribution, Clearance, BRL Cellular Location and Systemic Risk Assessment via 45Ca Labelling and Histological Analysis. Scientific Reports, 2016, 6, 33443. doi: 10.1038/srep33443
  48. Su, S.; Wang, J.; Vargas, E.; Wei, J.; Martinez-Zaguilan, R.; Sennoune, S.R.; Pantoya, M.L.; Wang, S.; Chaudhuri, J.; Qiu, J. Porphyrin Immobilized Nano-Graphene Oxide for Enhanced and Targeted Photothermal Therapy of Brain Cancer. ACS Biomaterials Science & Engineering, 2016, 2(8), 1357–1366. doi: 10.1021/acsbiomaterials.6b00290
  49. Zhang, L.; Navaratna, T.; Thurber, G.M. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity , 2016, 27(7), 1663–1672. doi: 10.1021/acs.bioconjchem.6b00209
  50. Pérez-Medina, C.; Abdel-Atti, D.; Tang, J.; Zhao, Y.; Fayad, Z.A.; Lewis, J.S.; Mulder, W.J.M.; Reiner, T. Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nature Communications, 2016, 7, 11838. doi: 10.1038/ncomms11838
  51. Zhao, Y.; Fay, F.; Hak, S.; Manuel Perez-Aguilar, J.; Sanchez-Gaytan, B.L.; Goode, B.; Duivenvoorden, R.; de Lange Davies, C.; Bjørkøy, A.; Weinstein, H.; Fayad, Z.A.; Pérez-Medina, C.; Mulder, W.J.M. Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nature Communications, 2016, 7, 11221. doi: 10.1038/ncomms11221
  52. Dhande, Y.K.; Wagh, B.S.; Hall, B.C.; Sprouse, D.; Hackett, P.B.; Reineke, T.M. N-Acetylgalactosamine Block-co-Polycations Form Stable Polyplexes with Plasmids and Promote Liver-Targeted Delivery. Biomacromolecules, 2016, 17(3), 830–840. doi: 10.1021/acs.biomac.5b01555
  53. Kim, J.B.; Park, K.; Ryu, Ji.; Lee, J.J.; Lee, M.W.; Cho, H.S.; Nam, H.S.; Park, O.K.; Song, J.W.; Kim, T.S.; Oh, D.J.; Gweon, D.; Oh, W.-Y.; Yoo, H.; Kim, J.W. Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors. Scientific Reports, 2016, 6, 22608. doi: 10.1038/srep22608
  54. Tolstyka, Z.P.; Phillips, H.; Cortez, M.; Wu, Y.; Ingle, N.; Bell, J.B.; Hackett, P.B.; Reineke, T.M. Trehalose-Based Block Copolycations Promote Polyplex Stabilization for Lyophilization and in Vivo pDNA Delivery. ACS Biomaterials Science & Engineering, 2016, 2(1), 43–55. doi: 10.1021/acsbiomaterials.5b00312
  55. Turcheniuk, K.; Dumych, T.; Bilyy, R.; Turcheniuk, V.; Bouckaert, J.; Vovk, V.; Chopyak, V.; Zaitsev, V.; Mariot, P.; Prevarskaya, N.; Boukherrouba, R.; Szunerits, S. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Advances, 2016, 6(2), 1600–1610. doi: 10.1039/c5ra24662h
  56. Gremse, F.; Doleschel, D.; Zafarnia, S.; Babler, A.; Jahnen-Dechent, W.; Lammers, T.; Lederle, W.; Kiessling, F. Hybrid µCT-FMT imaging and image analysis. Journal of Visualized Experiments, 2015, e52770. doi: 10.3791/52770
  57. Rudnick-Glick, S.; Corem-Salkmon, E.; Grinberg, I.; Yehuda, R.; Margel, S. Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model. Journal of Nanobiotechnology, 2015, 13(1), 80. doi: 10.1186/s12951-015-0126-0
  58. Alexander, S.C.; Busby, K.N.; Cole, C.M.; Zhou, C.Y.; Devaraj, N.K. Site-Specific Covalent Labeling of RNA by Enzymatic Transglycosylation. Journal of the American Chemical Society, 2015, 137(40), 12756–12759. doi: 10.1021/jacs.5b07286
  59. Yu, Q.; Wei, Z.; Shi, J.; Guan, S.; Du, N.; Shen, T.; Tang, H.; Jia, B.; Wang, F.; Gan, Z. Polymer-Doxorubicin Conjugate Micelles Based on Poly(ethylene glycol) and Poly(N-(2-hydroxypropyl) methacrylamide): Effect of Negative Charge and Molecular Weight on Biodistribution and Blood Clearance. Biomacromolecules, 2015, 16(9), 2645–2655. doi: 10.1021/acs.biomac.5b00460
  60. Mwangi, T.K.; Bowles, R.D.; Tainter, D.M.; Bell, R.D.; Kaplan, D.L.; Setton, L.A. Synthesis and characterization of silk fibroin microparticles for intra-articular drug delivery. International Journal of Pharmaceutics, 2015, 485(1–2), 7–14. doi: 10.1016/j.ijpharm.2015.02.059
  61. Shi, Y.; van der Meel, R.; Theek, B.; Oude Blenke, E.; Pieters, E.H.E.; Fens, M.H.A.M.; Ehling, J.; Schiffelers, R.M.; Storm, G.; van Nostrum, C.F.; Lammers, T.; Hennink, W.E. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π–Π Stacking Stabilized Polymeric Micelles. ACS Nano, 2015, 9(4), 3740–3752. doi: 10.1021/acsnano.5b00929
  62. Zhang, J.; Wang, G.; Mao, D.; Han, A.; Xiao, N.; Qi, X.; Ding, D.; Kong, D. Targeted In Vivo Imaging of Mouse Hindlimb Ischemia Using Fluorescent Gelatin Nanoparticles. Journal of Nanomaterials, 2015, 2015, Article ID 704817
  63. Choi, E.B.; Choi, J.; Bae, S.R.; Kim, H.-O.; Jang, E.; Kang, B.; Kim, M.-H.; Kim, B.; Suh, J.-S.; Lee, K. et al. Colourimetric redox-polyaniline nanoindicator for in situ vesicular trafficking of intracellular transport. Nano Research, 2015, 8(4), 1169–1179. doi: 10.1007/s12274-014-0597-6
  64. Brady, M.L.; Raghavan, R.; Singh, D.; Anand, P.; Fleisher, A.S.; Mata, J.; Broaddus, W.C.; Olbricht, W.L. In vivo performance of a microfabricated catheter for intraparenchymal delivery. Journal of Neuroscience Methods, 2014, 229, 76-83. doi: 10.1016/j.jneumeth.2014.03.016
  65. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  66. Lin, X.; Zhu, H.; Luo, Z.; Hong, Y.; Zhang, H.; Liu, X.; Ding, H.; Tian, H.; Yang, Z. Near-Infrared Fluorescence Imaging of Non-Hodgkin's Lymphoma CD20 Expression Using Cy7-Conjugated Obinutuzumab. Molecular Imaging and Biology, 2014. doi: 10.1007/s11307-014-0742-3
  67. Novo, L.; Rizzo, L.Y.; Golombek, S.K.; Dakwar, G.R.; Lou, B.; Remaut, K.; Mastrobattista, E.; van Nostrum, C.F.; Jahnen-Dechent, W.; Kiessling, F. et al. Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. Journal of Controlled Release, 2014, 195, 162-175. doi: 10.1016/j.jconrel.2014.08.028
  68. Zhao, Y.; Meek, G.A.; Levine, B.G.; Lunt, R.R. Near-Infrared Harvesting Transparent Luminescent Solar Concentrators. Advanced Optical Materials, 2014, 2(7), 606-611. doi: 10.1002/adom.201400103
  69. Skaat, H.; Corem-Salkmon, E.; Grinberg, I.; Last, D.; Goez, D.; Mardor, Y.; Margel, S. Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils. International Journal of Nanomedicine, 2013, 8, 4063–4076. doi: 10.2147/ijn.s52833
  70. Gluz, E.; Grinberg, I.; Corem-Salkmon, E.; Mizrahi, D.; Margel, S. Engineering of new crosslinked near-infrared fluorescent polyethylene glycol bisphosphonate nanoparticles for bone targeting. Journal of Polymer Science, Part A: Polymer Chemistry, 2013, 51(20), 4282-4291. doi: 10.1002/pola.26858
  71. Gluz, E.; Mizrahi, D.M.; Margel, S. Synthesis and characterization of new poly(ethylene glycol)bisphosphonate vinylic monomer and non-fluorescent and NIR-fluorescent bisphosphonate micrometer-sized particles. Polymer, 2013, 54(2), 565-571. doi: 10.1016/j.polymer.2012.11.071
  72. Saxena, T.; Karumbaiah, L.; Gaupp, E.A.; Patkar, R.; Patil, K.; Betancur, M.; Stanley, G.B.; Bellamkonda, R.V. The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials, 2013, 34(20), 4703-4713. doi: 10.1016/j.biomaterials.2013.03.007

Cyanine7 alkyne

  1. Kocere, A.; Resseguier, J.; Wohlmann, J.; Skjeldal, F.M.; Khan, S.; Speth, M.; Dal, N.-J.K.; Ng, M.Y.W.; Alonso-Rodriguez, N.; Scarpa, E.; Rizzello, L.; Battaglia, G.; Griffiths, G.; Fenaroli, F. Real-time imaging of polymersome nanoparticles in zebrafish embryos engrafted with melanoma cancer cells: Localization, toxicity and treatment analysis. EBioMedicine, 2020, 58, 102902. doi: 10.1016/j.ebiom.2020.102902
  2. Conibear, A.C.; Thewes, K.; Groysbeck, N.; Becker, C.F.W. Multifunctional Scaffolds for Assembling Cancer-Targeting Immune Stimulators Using Chemoselective Ligations. Frontiers in Chemistry, 2019, 7, 113. doi: 10.3389/fchem.2019.00113
  3. Tang, H.; Zhang, J.; Tang, J.; Shen, Y.; Guo, W.; Zhou, M.; Wang, R.; Jiang, N.; Gan, Z.; Yu, Q. Tumor specific and renal excretable star-like tri-block polymer-doxorubicin conjugates for safe and efficient anticancer therapy. Biomacromolecules, 2018, 19(7), 2849–2862. doi: 10.1021/acs.biomac.8b00425
  4. Smith, A.A.A.; Zuwala, K.; Pilgram, O.; Johansen, K.S.; Tolstrup, M.; Dagnæs-Hansen, F.; Zelikin, A.N. Albumin-Polymer-Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles. ACS Macro Letters, 2016, 5, 1089–1094. doi: 10.1021/acsmacrolett.6b00544
  5. Zhang, L.; Thurber, G.M. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging. Molecular Imaging and Biology, 2016, 18(1), 79–89. doi: 10.1007/s11307-015-0880-2

Cyanine7 amine

  1. Shao, Z.; Flynn, R.A.; Crowe, J.L.; Zhu, Y.; Liang, J.; Jiang, W.; Aryan, F.; Aoude, P.; Bertozzi, C.R.; Estes, V.M.; Lee, B.J.; Bhagat, G.; Zha, S.; Calo, E. DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis. Nature, 2020, 579, 291–296. doi: 10.1038/s41586-020-2041-2
  2. de Oliveira, J.K.; Ueda-Nakamura, T.; Corrêa, A.G.; Petrilli, R.; Lopez, R.F.V.; Nakamura, C.V.; Auzely-Velty, R. Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. Materials Science and Engineering: C, 2020, 110, 110720. doi: 10.1016/j.msec.2020.110720
  3. Pola, R.; Böhmová, E.; Filipová, M.; Pechar, M.; Pankrác, J.; Větvička, D.; Olejár, T.; Kabešová, M.; Poučková, P.; Šefc, L.; Zábrodský, M.; Janoušková, O.; Bouček, J.; Etrych, T. Targeted Polymer-Based Probes for Fluorescence Guided Visualization and Potential Surgery of EGFR-Positive Head-and-Neck Tumors. Pharmaceutics, 2020, 12, 31. doi: 10.3390/pharmaceutics12010031
  4. Aydemir, M. Triplet-Triplet Annihilation Based Energy Upconversion Mechanism: Cyanine7 Dye Doped with Super Yellow and Rubrene Hosts. Sakarya University Journal of Science, 2020, 24(1), 55–59. doi: 10.16984/saufenbilder.538797
  5. Pola, R.; Parnica, J.; Zuska, K.; Böhmová, E.; Filipová, M.; Pechar, M.; Pankrác, J.; Mucksová, J.; Trefil, P.; Kalina, J.; Šefc, L.; Větvička, D.; Poučková, P.; Bouček, J.; Janoušková, O.; Etrych, T. Oligopeptide-targeted polymer nanoprobes for fluorescence-guided endoscopic surgery. Multifunctional Materials, 2019, 2(2), 024004. doi: 10.1088/2399-7532/ab159e
  6. Nuhn, L.; De Koker, S.; Van Lint, S.; Zhong, Z.; Catani, J.P.; Combes, F.; Deswarte, K.; Li, Y.; Lambrecht, B.N.; Lienenklaus, S.; Sanders, N.N.; David, S.A.; Tavernier, J.; De Geest, B.G. Nanoparticle-Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses. Advanced Materials, 2018, 30(45), e1803397. doi: 10.1002/adma.201803397
  7. Joo, J.; Poon, C.; Yoo, S.P.; Chung, E.J. Shape Effects of Peptide Amphiphile Micelles for Targeting Monocytes. Molecules, 2018, 23(11), 2786. doi: 10.3390/molecules23112786
  8. Melgar-Asensio, I.; Kandela, I.; Aird, F.; Darjatmoko, S.R.; de Los Rios, C.; Sorenson, C.M.; Albert, D.M.; Sheibani, N.; Henkin, J. Extended Intravitreal Rabbit Eye Residence of Nanoparticles Conjugated With Cationic Arginine Peptides for Intraocular Drug Delivery: In Vivo Imaging. Investigative Ophthalmology & Visual Science, 2018, 59(10), 4071–4081. doi: 10.1167/iovs.18-24087
  9. Segura-Ibarra, V.; Cara, F.E.; Wu, S.; Iruegas-Nunez, D.A.; Wang, S.; Ferrari, M.; Ziemys, A.; Valderrabano, M.; Blanco, E. Nanoparticles administered intrapericardially enhance payload myocardial distribution and retention. Journal of Controlled Release, 2017, 262, 18–27. doi: 10.1016/j.jconrel.2017.07.012
  10. Cheng, L.; Ji, K.; Shih, T. Y.; Haddad, A.; Giatsidis, G.; Mooney, D.J.; Orgill, D.P.; Nabzdyk, C.S. Injectable Shape-Memorizing Three-Dimensional Hyaluronic Acid Cryogels for Skin Sculpting and Soft Tissue Reconstruction. Tissue Engineering Part A, 2017, 23(5–6), 243–251. doi: 10.1089/ten.tea.2016.0263

Cyanine7 azide

  1. Meka, R.R.; Venkatesha, S.H.; Moudgil, K.D. Peptide-directed liposomal delivery improves the therapeutic index of an immunomodulatory cytokine in controlling autoimmune arthritis. Journal of Controlled Release, 2018, 286, 279–288. doi: 10.1016/j.jconrel.2018.08.007
  2. Lyu, Z.; Kang, L.; Buuh, Z.Y.; Jiang, D.; McGuth, J.C.; Du, J.; Wissler, H.L.; Cai, W.; Wang, R.E. A Switchable Site-Specific Antibody Conjugate. ACS Chemical Biology, 2018, 13(4), 958–964. doi: 10.1021/acschembio.8b00107
  3. Maudens, P.; Seemayer, C.A.; Thauvin, C.; Gabay, C.; Jordan, O.; Allémann, E. Nanocrystal-Polymer Particles: Extended Delivery Carriers for Osteoarthritis Treatment. Small, 2018, 14(8), 1703108. doi: 10.1002/smll.201703108
  4. Morton, S.W.; Zhao, X.; Quadir, M.A.; Hammond, P.T. FRET-enabled biological characterization of polymeric micelles. Biomaterials, 2014, 35(11), 3489-3496. doi: 10.1016/j.biomaterials.2014.01.027

Cyanine7 carboxylic acid

  1. Matoori, S.; Mooney, D.J. Near-Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16(20), 2000369. doi: 10.1002/smll.202000369
  2. Svenskaya, Y.I.; Genina, E.A.; Parakhonskiy, B.V.; Lengert, E.; Talnikova, E.E.; Terentyuk, G.S.; Utz, S.R.; Gorin, D.A.; Tuchin, V.V.; Sukhorukov, G. A simple non-invasive approach towards efficient transdermal drug delivery based on biodegradable particulate system. ACS Applied Materials & Interfaces, 2019, 11(19), 17270–17282. doi: 10.1021/acsami.9b04305
  3. Yang, C.; Liu, D.; Renny, A.; Kuttipillai, P.S.; Lunt, R.R. Integration of near-infrared harvesting transparent luminescent solar concentrators onto arbitrary surfaces. Journal of Luminescence, 2019, 210, 239–246. doi: 10.1016/j.jlumin.2019.02.042
  4. Luthman, A.S. Wide-Field fHSI with a Linescan SRDA. In: Spectrally Resolved Detector Arrays for Multiplexed Biomedical Fluorescence Imaging (Springer Thesis), 2018, 51–85. doi: 10.1007/978-3-319-98255-7_3
  5. Luthman, A.S.; Dumitru, S.; Quiros-Gonzalez, I.; Joseph, J.; Bohndiek, S.E. Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. Journal of Biophotonics, 2017, 10(6–7), 840–853. doi: 10.1002/jbio.201600304
  6. Zhao, Y.; Fay, F.; Hak, S.; Manuel Perez-Aguilar, J.; Sanchez-Gaytan, B.L.; Goode, B.; Duivenvoorden, R.; de Lange Davies, C.; Bjørkøy, A.; Weinstein, H.; Fayad, Z.A.; Pérez-Medina, C.; Mulder, W.J.M. Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nature Communications, 2016, 7, 11221. doi: 10.1038/ncomms11221
  7. Ma, X.; Cheng, Z.; Jin, Y.; Liang, X.; Yang, X.; Dai, Z.; Tian, J. SM5-1-Conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted hepatocellular carcinoma imaging and therapy. Biomaterials, 2014, 35(9), 2878-2889. doi: 10.1016/j.biomaterials.2013.12.045

Cyanine7 maleimide

  1. Liu, Y.; Fens, M.H.A.M.; Lou, B.; van Kronenburg, N.C.H.; Maas-Bakker, R.F.M.; Kok, R.J.; Oliveira, S.; Hennink, W.E.; van Nostrum, C.F. π-π-Stacked Poly(ε-caprolactone)-b-poly(ethylene glycol) Micelles Loaded with a Photosensitizer for Photodynamic Therapy. Pharmaceutics, 2020, 12(4), 338. doi: 10.3390/pharmaceutics12040338
  2. Liu, Y.; Scrivano, L.; Peterson, J.D.; Fens, M.H.A.M.; Beltrán Hernández, I.; Mesquita, B.; Sastre Torano, J.; Hennink, W.E.; van Nostrum, C.F.; Oliveira, S. EGFR targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy. Molecular Pharmaceutics, 2020, 17(4), 1276–1292. doi: 10.1021/acs.molpharmaceut.9b01280
  3. Melgar-Asensio, I.; Kandela, I.; Aird, F.; Darjatmoko, S.R.; de Los Rios, C.; Sorenson, C.M.; Albert, D.M.; Sheibani, N.; Henkin, J. Extended Intravitreal Rabbit Eye Residence of Nanoparticles Conjugated With Cationic Arginine Peptides for Intraocular Drug Delivery: In Vivo Imaging. Investigative Ophthalmology & Visual Science, 2018, 59(10), 4071–4081. doi: 10.1167/iovs.18-24087
  4. Matsuoka, D.; Watanabe, H.; Shimizu, Y.; Kimura, H.; Yagi, Y.; Kawai, R.; Ono, M.; Saji, H. Structure–activity relationships of succinimidyl-Cys-C (O)-Glu derivatives with different near-infrared fluorophores as optical imaging probes for prostate-specific membrane antigen. Bioorganic & Medicinal Chemistry, 2018, 26(9), 2291–2301. doi: 10.1016/j.bmc.2018.03.015
  5. Tondera, C.; Wieduwild, R.; Röder, E.; Werner, C.; Zhang, Y.; Pietzsch, J. In Vivo Examination of an Injectable Hydrogel System Crosslinked by Peptide-Oligosaccharide Interaction in Immunocompetent Nude Mice. In Vivo Examination of an Injectable Hydrogel System Crosslinked by Peptide-Oligosaccharide Interaction in Immunocompetent Nude Mice, 2017, 27(15), 1605189. doi: 10.1002/adfm.201605189
  6. Wang, T.; Tang, Y.; He, X.; Yan, J.; Wang, C.; Feng, X. Self-Assembled Raspberry-Like Core/Satellite Nanoparticles for Anti-Inflammatory Protein Delivery. ACS Applied Materials & Interfaces, 2017, 9(8), 6902–6907. doi: 10.1021/acsami.6b16277
  7. Schwarz, B.; Madden, P.; Avera, J.; Gordon, B.; Larson, K.; Miettinen, H.; Uchida, M.; LaFrance, B.; Basu, G.; Rynda-Apple, A.; Douglas, T. Symmetry Controlled, Genetic Presentation of Bio-Active Proteins on the P22 Virus-Like Particle Using an External Decoration Protein. ACS Nano, 2015, 9(9), 9134–9147. doi: 10.1021/acsnano.5b03360

Cyanine7.5 NHS ester

  1. Babity, S.; Polomska, A.K.; Couture, F.; Bonmarin, M.; Fehr, D.; Detmar, M.; Brambilla, D. Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function. Journal of Controlled Release, 2020, 327, 350–359. doi: 10.1016/j.jconrel.2020.08.017
  2. Gonzales, J.; Pirovano, G.; Chow, C.Y.; de Souza Franca, P.D.; Carter, L.M.; Klint, J.K.; Guru, N.; Lewis, J.S.; King, G.F.; Reiner, T. Fluorescence labeling of a Nav1.7-targeted peptide for near-infrared nerve visualization. EJNMMI Research, 2020, 10, 49. doi: 10.1186/s13550-020-00630-4
  3. Zhang, Y.; García-Gabilondo, M.; Grayston, A.; Feiner, I.V.J.; Anton-Sales, I.; Loiola, R.A.; Llop, J.; Ramos-Cabrer, P.; Barba, I:; Garcia-Dorado, D.; Gosselet, F.; Rosell, A.; Roig, A. PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities. Nanoscale, 2020, 12(8), 4988–5002. doi: 10.1039/c9nr10620k
  4. Jiang, S.; Prozeller, D.; Pereira, J.; Simon, J.; Han, S.; Wirsching, S.; Fichter, M.; Mottola, M.; Lieberwirth, I.; Morsbach, S.; Mailänder, V.; Gehring, S.; Crespy, D.; Landfester, K. Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale, 2020, 12(4), 2626–2637. doi: 10.1039/c9nr09879h
  5. Gui, Z.; Zhu, J.; Ye, S.; Ye, J.; Chen, J.; Ling, Y.; Cai, X.; Cao, P.; He, Z.; Hu, C. Prolonged melittin release from polyelectrolyte-based nanocomplexes decreases acute toxicity and improves blood glycemic control in a mouse model of type II diabetes. International Journal of Pharmaceutics, 2020, 577, 119071. doi: 10.1016/j.ijpharm.2020.119071
  6. Zhang, R.; Liu, R.; Liu, C.; Pan, L.; Qi, Y.; Cheng, J.; Guo, J.; Jia, Y.; Ding, J.; Zhang, J.; Hu, H. A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases. Biomaterials, 2020, 230, 119605. doi: 10.1016/j.biomaterials.2019.119605
  7. Che, L.; Liu, Z.; Wang, D.; Xu, C.; Zhang, C.; Meng, J.; Zheng, J.; Yuan, H.; Zhao, G.; Zhou, X. Computer-assisted Engineering of Programmed Drug Releasing Multilayer Nanomedicine via Indomethacin-mediated Ternary Complex for Therapy Against a Multidrug Resistant Tumor. Acta Biomaterialia, 2019, 97, 461–473. doi: 10.1016/j.actbio.2019.07.033
  8. Zhou, X.; Ling, K.; Liu, M.; Zhang, X.; Ding, J.; Dong, Y.; Liang, Z.; Li, J.; Zhang, J. Targeted Delivery of Cisplatin-Derived Nanoprecursors via a Biomimetic Yeast Microcapsule for Tumor Therapy by the Oral Route. Theranostics, 2019, 9(22), 6568–6586. doi: 10.7150/thno.35353
  9. Zhang, Q.; Zhang, F.; Li, S.; Liu, R.; Jin, T.; Dou, Y.; Zhou, Z.; Zhang, J. A Multifunctional Nanotherapy for Targeted Treatment of Colon Cancer by Simultaneously Regulating Tumor Microenvironment. Theranostics, 2019, 9(13), 3732–3753. doi: 10.7150/thno.34377
  10. Vinciguerra, D.; Degrassi, A.; Mancini, L.; Mura, S.; Mougin, J.; Couvreur, P.; Nicolas, J. Drug-Initiated Synthesis of Heterotelechelic Polymer Prodrug Nanoparticles for in Vivo Imaging and Cancer Cell Targeting. Biomacromolecules, 2019, 20(7), 2464–2476. doi: 10.1021/acs.biomac.9b00148
  11. Qi, T.; Chen, B.; Wang, Z.; Du, H.; Liu, D.; Yin, Q.; Liu, B.; Zhang, Q.; Wang, Y. A pH-Activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy. Biomaterials, 2019, 213, 119219. doi: 10.1016/j.biomaterials.2019.05.030
  12. Mo, Y.; Du, H.; Chen, B.; Liu, D.; Yin, Q.; Yan, Y.; Wang, Z.; Wan, F.; Qi, T.; Wang, Y.; Zhang, Q.; Wang, Y. Quick-Responsive Polymer-Based Thermo-Sensitive Liposomes for Controlled Doxorubicin Release and Chemotherapy. ACS Biomaterials Science & Engineering, 2019, 5(5), 2316–2329. doi: 10.1021/acsbiomaterials.9b00343
  13. He, Z.; Hu, Y.; Gui, Z.; Zhou, Y.; Nie, T.; Zhu, J.; Liu, Z.; Chen, K.; Liu, L.; Leong, K.W.; Cao, P.; Chen, Y.; Mao, H.-Q. Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes. Journal of Controlled Release, 2019, 301, 119–128. doi: 10.1016/j.jconrel.2019.03.014
  14. Näkki, S.; Wang, J.T.-W.; Wu, J.; Fan, L.; Rantanen, J.; Nissinen, T.; Kettunen, M.I.; Backholm, M.; Ras, R.H.A.; Al-Jamal, K.T.; Lehto, V.-P.; Xu, W. Designed inorganic porous nanovector with controlled release and MRI features for safe administration of doxorubicin. International Journal of Pharmaceutics, 2019, 554, 327–336. doi: 10.1016/j.ijpharm.2018.10.074
  15. Xu, H.; Bandari, R.; Lee, L.E.; Li, R.; Yu, P.; Smith, C.J.; Ma, L. Design, Synthesis, and In Vitro and In Vivo Evaluation of High Affinity and Specificity Near-Infrared Fluorescent Bombesin Antagonists for Tumor Imaging. Journal of Medicinal Chemistry, 2018, 61(17), 7657–7670. doi: 10.1021/acs.jmedchem.8b00614
  16. Jones, J.E.; Busi, S.B.; Mitchem, J.B.; Amos-Landgraf, J.M.; Lewis, M.R. Evaluation of a Tumor-Targeting, Near-Infrared Fluorescent Peptide for Early Detection and Endoscopic Resection of Polyps in a Rat Model of Colorectal Cancer. Molecular Imaging, 2018, 17, 1536012118790065. doi: 10.1177/1536012118790065
  17. He, S.; Li, C.; Zhang, Q.; Ding, J.; Liang, X.-J.; Chen, X.; Xiao, H.; Chen, X.; Zhou, D.; Huang, Y. Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS Nano, 2018, 12(7), 7272–7281. doi: 10.1021/acsnano.8b03476
  18. Xue, F.; Wang, Y.; Zhang, Q.; Han, S.; Zhang, F.; Jin, T.; Li, C.; Hu, H.; Zhang, J. Self-assembly of affinity-controlled nanoparticles via host-guest interactions for drug delivery. Nanoscale, 2018, 10(26), 12364–12377. doi: 10.1039/C8NR01518J
  19. Li, H.; Li, K.; Dai, Y.; Xu, X.; Cao, X.; Zeng, Q.; He, H.; Pang, L.; Liang, J.; Chen, X.; Zhan, Y. In vivo near infrared fluorescence imaging and dynamic quantification of pancreatic metastatic tumors using folic acid conjugated biodegradable mesoporous silica nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(6), 1867–1877. doi: 10.1016/j.nano.2018.04.018
  20. Malhotra, M.; Sekar, T.V.; Ananta, J.S.; Devulapally, R.; Afjei, R.; Babikir, H.A.; Paulmurugan, R.; Massoud, T.F. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model. Oncotarget, 2018, 9(30), 21478–21494. doi: 10.18632/oncotarget.25135
  21. Shi, F.; Li, M.; Wang, J.; Wu, D.; Pan, M.; Guo, M.; Dou, J. Induction of multiple myeloma cancer stem cell apoptosis using conjugated anti-ABCG2 antibody with epirubicin-loaded microbubbles. Stem Cell Research & Therapy, 2018, 9, 144. doi: 10.1186/s13287-018-0885-2
  22. Loebel, C.; Rodell, C.B.; Chen, M.H.; Burdick, J.A. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nature Protocols, 2017, 12(8), 1521–1541. doi: 10.1038/nprot.2017.053
  23. O'Mary, H.L.; Aldayel, A.M.; Valdes, S.A.; Naguib, Y.W.; Li, X.; Salvady, K.; Cui, Z. Acid-sensitive sheddable PEGylated, mannose-modified nanoparticles increase the delivery of betamethasone to chronic inflammation sites in a mouse model. Molecular Pharmaceutics, 2017, 14(6), 1929–1937. doi: 10.1021/acs.molpharmaceut.7b00024
  24. Sivak, L.; Subr, V.; Tomala, J.; Rihova, B.; Strohalm, J.; Etrych, T.; Kovar, M. Overcoming multidrug resistance via simultaneous delivery of cytostatic drug and P-glycoprotein inhibitor to cancer cells by HPMA copolymer conjugate. Biomaterials, 2017, 115, 65–80. doi: 10.1016/j.biomaterials.2016.11.013
  25. Lin, S.; Shah, A.; Hernández-Gil, J.; Stanziola, A.; Harriss, B.I.; Matsunaga, T.O.; Long, N.; Bamber, J.; Tang, M.-X. Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging. Photoacoustics, 2017, 6, 26–36. doi: 10.1016/j.pacs.2017.04.001
  26. Cheng, J.; Feng, S.; Han, S.; Zhang, X.; Chen, Y.; Zhou, X.; Wang, R.; Li, X.; Hu, H.; Zhang, J. Facile Assembly of Cost-Effective and Locally Applicable or Injectable Nanohemostats for Hemorrhage Control. ACS Nano, 2016, 10(11), 9957&ndash9973. doi: 10.1021/acsnano.6b04124
  27. Zhang, Q.; Tao, H.; Lin, Y.; Hu, Y.; An, H.; Zhang, D.; Feng, S.; Hu, H.; Wang, R.; Li, X.; Zhang, J. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials, 2016, 105, 206–221. doi: 10.1016/j.biomaterials.2016.08.010
  28. Feng, S.; Hu, Y.; Peng, S.; Han, S.; Tao, H.; Zhang, Q.; Xu, X.; Zhang, J.; Hu, H. Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials, 2016, 105, 167–184. doi: 10.1016/j.biomaterials.2016.08.003
  29. Dou, Y.; Guo, J.; Chen, Y.; Han, S.; Xu, X.; Shi, Q.; Jia, Y.; Liu, Y.; Deng, Y.; Wang, R.; Li, X.; Zhang, J. Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice. Journal of Controlled Release, 2016, 235, 48–62. doi: 10.1016/j.jconrel.2016.05.049
  30. Markovic, S.; Belz, J.; Kumar, R.; Cormack, R.A.; Sridhar, S.; Niedre, M. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants. International Journal of Nanomedicine, 2016, 11, 1213–1223. doi: 10.2147/IJN.S93324
  31. Zhang, Z.; Cai, H.; Liu, Z.; Yao, P. Effective Enhancement of Hypoglycemic Effect of Insulin by Liver-targeted Nanoparticles Containing Cholic Acid-modified Chitosan Derivative. Molecular Pharmaceutics, 2016, 13(7), 2433–2442. doi: 10.1021/acs.molpharmaceut.6b00188
  32. Han, F.Y.; Thurecht, K.J.; Lam, A.-L.; Whittaker, A.K.; Smith, M.T. Novel Polymeric Bioerodable Microparticles for Prolonged-Release Intrathecal Delivery of Analgesic Agents for Relief of Intractable Cancer-Related Pain. Journal of Pharmaceutical Sciences, 2015, 104(7), 2334–2344. doi: 10.1002/jps.24497
  33. Duong, H.T.T.; Dong, Z.; Su, L; Boyer, C.; George, J.; Davis, T.P.; Wang, J. The Use of Nanoparticles to Deliver Nitric Oxide to Hepatic Stellate Cells for Treating Liver Fibrosis and Portal Hypertension. Small, 2015, 11(19), 2291–2304. doi: 10.1002/smll.201402870
  34. Chen, K.; Xu, X.; Guo, J.W.; Zhang, X.; Han, S.; Wang, R.; Li, X.; Zhang, J. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry. Biomacromolecules, 2015, 16(11), 3574–3583. doi: 10.1021/acs.biomac.5b01056
  35. Lin, Y.-A.; Cheetham, A.G.; Zhang, P.; Ou, Y.-C.; Li, Y.; Liu, G.; Hermida Merino, D.; Hamley, I.W.; Cui, H. Multi-Walled Nanotubes Formed by Catanionic Mixtures of Drug Amphiphiles. ACS Nano, 2014, 8(12), 12690-12700. doi: 10.1021/nn505688b
  36. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  37. Lu, H.D.; Soranno, D.E.; Rodell, C.B.; Kim, I.L.; Burdick, J.A. Secondary Photocrosslinking of Injectable Shear-Thinning Dock-and-Lock Hydrogels. Advanced Healthcare Materials, 2013, 2(7), 1028-1036. doi: 10.1002/adhm.201200343
  38. Yang, H.; Mao, H.; Wan, Z.; Zhu, A.; Guo, M.; Li, Y.; Li, X.; Wan, J.; Yang, X.; Shuai, X. et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials, 2013, 34(36), 9124-9133. doi: 10.1016/j.biomaterials.2013.08.022
  39. Zhou, K.; Liu, H.; Zhang, S.; Huang, X.; Wang, Y.; Huang, G.; Sumer, B.D.; Gao, J. Multicolored pH-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic pH Stimuli. Journal of the American Chemical Society, 2012, 134(18), 7803-7811. doi: 10.1021/ja300176w

Cyanine7.5 alkyne

  1. Chan, P.S.; Xian, J.W.; Li, Q.; Chan, C.W.; Leung, S.S.Y.; To, K.K.W. Biodegradable Thermosensitive PLGA-PEG-PLGA Polymer for Non-irritating and Sustained Ophthalmic Drug Delivery. AAPS Journal, 2019, 21, 59. doi: 10.1208/s12248-019-0326-x

Cyanine7.5 amine

  1. Yang, X.; Wang, Z.; Huang, H.; Ling, S.; Zhang, R.; Zhang, Y.; Chen, G.; Li, C.; Wang, Q. A Targeted Activatable NIR-IIb Nanoprobe for Highly Sensitive Detection of Ischemic Stroke in a Photothrombotic Stroke Model. Advanced Healthcare Materials, in press. doi: 10.1002/adhm.202001544
  2. Bhattacharya, D.S.; Svechkarev, D.A.; Bapat, A.; Patil, P.; Hollingsworth, M.A.; Mohs, A.M. Sulfation modulates the targeting properties of hyaluronic acid to P-selectin and CD44. ACS Biomaterials Science & Engineering, 2020, 6(6), 3585–3598. doi: 10.1021/acsbiomaterials.0c00115
  3. Qi, B.; Crawford, A.J.; Wojtynek, N.E.; Talmon, G.A.; Hollingsworth, M.A.; Ly, Q.P.; Mohs, A.M. Tuned near infrared fluorescent hyaluronic acid conjugates for delivery to pancreatic cancer for intraoperative imaging. Theranostics, 2020, 10(8), 3413–3429. doi: 10.7150/thno.40688
  4. Retout, M.; Brunetti, E.; Valkenier, H.; Bruylants, G. Limits of thiol chemistry revealed by quantitative analysis of mixed layers of thiolated-PEG ligands grafted onto gold nanoparticles. Journal of Colloid and Interface Science, 2019, 557, 807–815. doi: 10.1016/j.jcis.2019.09.047
  5. Melo, M.; Nunes, R.; Sarmento, B.; das Neves, J. Colorectal distribution and retention of polymeric nanoparticles following incorporation into a thermosensitive enema. Biomaterials Science, 2019, 7(9), 3801–3811. doi: 10.1039/c9bm00759h
  6. Hauser-Kawaguchi, A.; Milne, M.; Li, F.; Lee, T.Y.; Luyt, L.G. The development of a near infrared inulin optical probe for measuring glomerular filtration rate. International Journal of Biological Macromolecules, 2019, 123, 255–260. doi: 10.1016/j.ijbiomac.2018.11.034
  7. Li, Y.; Xiao, Y.; Lin, H.-P.; Reichel, D.; Bae, Y.; Lee, E.Y.; Jiang, Y.; Huang, X.; Yang, C.; Wang, Z. In vivo β-catenin attenuation by the integrin α5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis. Biomaterials, 2019, 188, 160–172. doi: 10.1016/j.biomaterials.2018.10.019
  8. Gurnani, Pratik and Sanchez-Cano, C.; Abraham, K.; Xandri-Monje, H.; Cook, A.B.; Hartlieb, M.; Lévi, F.; Dallmann, R.; Perrier, S. RAFT Emulsion Polymerization as a Platform to Generate Well-Defined Biocompatible Latex Nanoparticles. Macromolecular Bioscience, 2018, 18(10), e1800213. doi: 10.1002/mabi.201800213
  9. Tabe, H.; Sukenobe, K.; Kondo, T.; Sakurai, A.; Maruo, M.; Shimauchi, A.; Hirano, M.; Uno, S.-N.; Kamiya, M.; Urano, Y.; Matsushita, M.; Fujiyoshi, S. Cryogenic Fluorescence Localization Microscopy of Spectrally Selected Individual FRET Pairs in a Water Matrix. The Journal of Physical Chemistry B, 2018, 122(27), 6906–6911. doi: 10.1021/acs.jpcb.8b03977
  10. Souchek, J.J.; Wojtynek, N.E.; Payne, W.M.; Holmes, M.B.; Dutta, S.; Qi, B.; Datta, K.; LaGrange, C.A.; Mohs, A.M. Hyaluronic acid formulation of near infrared fluorophores optimizes surgical imaging in a prostate tumor xenograft. Acta Biomaterialia, 2018, 75, 323–333. doi: 10.1016/j.actbio.2018.06.016
  11. Mondal, G.; Almawash, S.; Chaudhary, A.K.; Mahato, R.I. EGFR-Targeted Cationic Polymeric Mixed Micelles for Co-delivery of Gemcitabine and miR-205 for treating Advanced Pancreatic Cancer. Molecular Pharmaceutics, 2017, 14(9), 3121–3133. doi: 10.1021/acs.molpharmaceut.7b00355
  12. Payne, W.M.; Hill, T.K.; Svechkarev, D.; Holmes, M.B.; Sajja, B.R.; Mohs, A.M. Multimodal Imaging Nanoparticles Derived from Hyaluronic Acid for Integrated Preoperative and Intraoperative Cancer Imaging. Contrast Media & Molecular Imaging, 2017, 2017, Article ID 9616791. doi: 10.1155/2017/9616791
  13. Ta, H.T.; Li, Z.; Hagemeyer, C.E.; Cowin, G.; Zhang, S.; Palasubramaniam, J.; Alt, K.; Wang, X.; Peter, K.; Whittaker, A.K. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials, 2017, 134, 31–42. doi: 10.1016/j.biomaterials.2017.04.037
  14. Cheng, J.; Feng, S.; Han, S.; Zhang, X.; Chen, Y.; Zhou, X.; Wang, R.; Li, X.; Hu, H.; Zhang, J. Facile Assembly of Cost-Effective and Locally Applicable or Injectable Nanohemostats for Hemorrhage Control. ACS Nano, 2016, 10(11), 9957&ndash9973. doi: 10.1021/acsnano.6b04124
  15. Hill, T.K.; Kelkar, S.S.; Wojtynek, N.E.; Souchek, J.J:; Payne, W.M.; Stumpf, K.; Marini, F.C.; Mohs, A.M. Near Infrared Fluorescent Nanoparticles Derived from Hyaluronic Acid Improve Tumor Contrast for Image-Guided Surgery. Theranostics, 2016, 6(13), 2314–2328. doi: 10.7150/thno.16514
  16. Kelkar, S.S.; Hill, T.K.; Marini, F.C.; Mohs, A.M. Near infrared fluorescent nanoparticles based on hyaluronic acid: self-assembly, optical properties, and cell interaction. Acta Biomaterialia, 2016, 36, 112–121. doi: 10.1016/j.actbio.2016.03.024
  17. Saadat, E.; Shakor, N.; Gholami, M.; Dorkoosh, F.A. Hyaluronic acid based micelle for articular delivery of triamcinolone, preparation, in vitro and in vivo evaluation. International Journal of Pharmaceutics, 2015, 489(1–2), 218–225. doi: 10.1016/j.ijpharm.2015.05.001

Cyanine7.5 azide

  1. Hellyer, S.D.; Aggarwal, S.; Chen, A.N.; Leach, K.; Lapinsky, D.J.; Gregory, K.J. Development of Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 2 Based on Two Positive Allosteric Modulator Chemotypes. ACS Chemical Neuroscience, 2020, 11(11), 1597–1609. doi: 10.1021/acschemneuro.0c00009
  2. Retout, M.; Brunetti, E.; Valkenier, H.; Bruylants, G. Limits of thiol chemistry revealed by quantitative analysis of mixed layers of thiolated-PEG ligands grafted onto gold nanoparticles. Journal of Colloid and Interface Science, 2019, 557, 807–815. doi: 10.1016/j.jcis.2019.09.047
  3. Pearce, H.A.; Qian, H.; Connell, T.U.; Huang, D.; Gottstein, C.; Donnelly, P.S.; Peter, K.; Gregorevic, P.; Hagemeyer, C.E. Site-specific glycation and chemo-enzymatic antibody sortagging for the retargeting of rAAV6 to inflamed endothelium. Molecular Therapy - Methods & Clinical Development, 2019, 14, 261–269. doi: 10.1016/j.omtm.2019.07.003
  4. Kong, J.-N.; Zhu, Z.; Itokazu, Y.; Wang, G.; Dinkins, M.B.; Zhong, L.; Lin, H.-P.; Elsherbini, A.; Leanhart, S.; Jiang, X.; Qin, H.; Zhi, W.; Spassieva, S.D.; Bieberich, E. Novel function of ceramide for regulation of mitochondrial ATP release in astrocytes. Journal of Lipid Research, 2018, 59(3), 488–506. doi: 10.1194/jlr.M081877
  5. van der Steen, S.C.H.A.; Raavé, R.; Langerak, S.; van Houdt, L.; van Duijnhoven, S.M.J.; van Lith, S.A.M.; Massuger, L.F.A.G.; Daamen, W.F.; Leenders, W.P.; van Kuppevelt, T.H. Targeting the extracellular matrix of ovarian cancer using functionalized, drug loaded lyophilisomes. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 229–239. doi: 10.1016/j.ejpb.2016.12.010
  6. Junker, M.; Rapoport, T.A. Involvement of VAT-1 in phosphatidylserine transfer from the endoplasmic reticulum to mitochondria. Traffic, 2015, 16(12), 1306–1317. doi: 10.1111/tra.12336

Cyanine7.5 carboxylic acid

  1. Yen, H.-C.; Kuo, T.-R.; Huang, M.-H.; Huang, H.-K.; Chen, C.-C. Design of Fluorescence-Enhanced Silver Nanoisland Chips for High-Throughput and Rapid Arsenite Assay. ACS Omega, 2020, 5(31), 19771–19777. doi: 10.1021/acsomega.0c02533
  2. Matoori, S.; Mooney, D.J. Near-Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16(20), 2000369. doi: 10.1002/smll.202000369
  3. DuRoss, A.N.; Neufeld, M.J.; Landry, M.R.; Rosch, J.G.; Eaton, C.T.; Sahay, G.; Thomas, C.R.; Sun, C. Micellar Formulation of Talazoparib and Buparlisib for Enhanced DNA Damage in Breast Cancer Chemoradiotherapy. ACS Applied Materials & Interfaces, 2019, 11(13), 12342–12356. doi: 10.1021/acsami.9b02408
  4. Howard, G.P.; Verma, G.; Ke, X.; Thayer, W.M.; Hamerly, T.; Baxter, V.K.; Lee, J.E.; Dinglasan, R.R.; Mao, H.-Q. Critical size limit of biodegradable nanoparticles for enhanced lymph node trafficking and paracortex penetration. Nano Research, 2019, 12(4), 837–844. doi: 10.1007/s12274-019-2301-3
  5. Luthman, A.S. Wide-Field fHSI with a Linescan SRDA. In: Spectrally Resolved Detector Arrays for Multiplexed Biomedical Fluorescence Imaging (Springer Thesis), 2018, 51–85. doi: 10.1007/978-3-319-98255-7_3
  6. Nunes, R.; Araújo, F.; Tavares, J.; Sarmento, B.; das Neves, J. Surface modification with polyethylene glycol enhances colorectal distribution and retention of nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 200–206. doi: 10.1016/j.ejpb.2018.06.029
  7. Roberts, S.; Andreou, C.; Choi, C.; Donabedian, P.; Jayaraman, M.; Pratt, E.C.; Tang, J.; Pérez-Medina, C.; de la Cruz, M.J.; Mulder, W.J.M.; Grimm, J.; Kircher, M.; Reiner, T. Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chemical Science, 2018, 9(25), 5646–5657. doi: 10.1039/C8SC01706A
  8. Luthman, A.S.; Dumitru, S.; Quiros-Gonzalez, I.; Joseph, J.; Bohndiek, S.E. Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. Journal of Biophotonics, 2017, 10(6–7), 840–853. doi: 10.1002/jbio.201600304
  9. Shen, T.; Guan, S.; Gan, Z.; Zhang, G.; Yu, Q. Polymeric Micelles with Uniform Surface Properties and Tunable Size and Charge: Positive Charges Improve Tumor Accumulation. Biomacromolecules, 2016, 17(5), 1801–1810. doi: 10.1021/acs.biomac.6b00234
  10. Ravar, F.; Saadat, E.; Gholami, M.; Dehghankelishady, P.; Mahdavi, M.; Azami, S.; Dorkoosh, F.A. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. Journal of Controlled Release, 2016, 229, 10–22. doi: 10.1016/j.jconrel.2016.03.012
  11. Du, N.; Guo, W.; Yu, Q.; Guan, S.; Guo, L.; Shen, T.; Tang, H.; Gan, Z. Poly(D,L-lactic acid)-block-poly(N-(2-hydroxypropyl)methacrylamide) nanoparticles for overcoming accelerated blood clearance and achieving efficient anti-tumor therapy. Polymer Chemistry, 2016, 7(36), 5719–5729. doi: 10.1039/c6py01113f
  12. Rodell, C.B.; Rai, R.; Faubel, S.; Burdick, J.A.; Soranno, D.E. Local Immunotherapy via Delivery of Interleukin-10 and Transforming Growth Factor β Antagonist for Treatment of Chronic Kidney Disease. Journal of Controlled Release, 2015, 206, 131–139. doi: 10.1016/j.jconrel.2015.03.025
  13. Rodell, C.B.; Wade, R.J.; Purcell, B.P.; Dusaj, N.N.; Burdick, J.A. Selective Proteolytic Degradation of Guest–Host Assembled, Injectable Hyaluronic Acid Hydrogels. ACS Biomaterials Science & Engineering, 2015, 1(4), 277–286. doi: 10.1021/ab5001673
  14. Wade, R.J.; Bassin, E.J.; Rodell, C.B.; Burdick, J.A. Protease-degradable electrospun fibrous hydrogels. Nature Communications, 2015, 6, 6639. doi: 10.1038/ncomms7639

Cyanine7.5 hydrazide

  1. Liu, S.; Dozois, M.D.; Chang, C.N.; Ahmad, A.; Ng, D.L.T.; Hileeto, D.; Liang, H.; Reyad, M.-M.; Boyd, S.; Jones, L.W.; Gu, F.X. Prolonged Ocular Retention of Mucoadhesive Nanoparticle Eye Drop Formulation Enables Treatment of Eye Diseases Using Significantly Reduced Dosage. Molecular Pharmaceutics, 2016, 13(9), 2897–2905. doi: 10.1021/acs.molpharmaceut.6b00445

Cyanine7.5 maleimide

  1. Men, Y.; Peng, S.; Yang, P.; Jiang, Q.; Zhang, Y.; Shen, B.; Dong, P.; Pang, Z.; Yang, W. Biodegradable Zwitterionic Nanogels with Long Circulation for Antitumor Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10(28), 23509–23521. doi: 10.1021/acsami.8b03943

DBCO NHS ester

  1. Adams, M.R.; Moody, C.T.; Sollinger, J.L.; Brudno, Y. Extracellular Matrix-Anchored Click Motifs for Specific Tissue Targeting. Molecular Pharmaceutics, 2020, 17(2), 392–403. doi: 10.1021/acs.molpharmaceut.9b00589
  2. Alshanski, I.; Blaszkiewicz, J.; Mervinetsky, E.; Rademann, J.; Yitzchaik, S.; Hurevich, M. Sulfation Patterns of Saccharides and Heavy Metal Ions Binding. Chemistry, 2019, 25(52), 12083–12090. doi: 10.1002/chem.201901538
  3. Andersen, V.L.; Vinther, M.; Kumar, R.; Ries, A.; Wengel, J.; Nielsen, J.S.; Kjems, J. A self-assembled, modular nucleic acid-based nanoscaffold for multivalent theranostic medicine. Theranostics, 2019, 9(9), 2662–2677. doi: 10.7150/thno.32060

DMF (dimethylformamide), labeling grade

  1. Paul, M.; Tscheuschner, G.; Herrmann, S.; Weller, M.G. Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor. Biosensors, 2020, 10(8), 89. doi: 10.3390/bios10080089
  2. Gu, R.; Oweida, T.; Yingling, Y.G.; Chilkoti, A.; Zauscher, S. Enzymatic synthesis of nucleobase-modified single-stranded DNA offers tunable resistance to nuclease degradation. Biomacromolecules, 2018, 19(8), 3525–3535. doi: 10.1021/acs.biomac.8b00816

DMS(O)MT aminolink C6

  1. Aparin, I.O.; Farzan, V.M.; Veselova, O.A.; Chistov, A.A.; Podkolzin, A.T.; Ustinov, A.V.; Shipulin, G.A.; Formanovsky, A.A.; Korshun, V.A.; Zatsepin, T.S. 1-Phenylethynylpyrene (PEPy) as a novel blue-emitting dye for qPCR assay. Analyst, 2016, 141, 1331–1338. doi: 10.1039/c5an01767j

EdU (5-ethynyl-2'-deoxyuridine)

  1. Wells, C.I.; Al-Ali, H.; Andrews, D.M.; Asquith, C.R.M.; Axtman, A.D.; Chung, M.; Dikic, I.; Ebner, D.; Elkins, J.M.; Ettmayer, P.; Fischer, C.; Frederiksen, M.; Gray, N.S.; Hatch, S.; Knapp, S.; Lee, S.; Lücking, U.; Michaelides, M.; Mills, C.E.; Müller, S.; Owen, D.; Picado, A.; Ramadan, K.; Saikatendu, K.S.; Schröder, M.; Stolz, A.; Tellechea, M.; Treiber, D.K.; Turunen, B.J.; Vilar, S.; Wang, J.; Zuercher, W.J.; Willson, T.M.; Drewry, D.H. The Kinase Chemogenomic Set (KCGS): An open science resource for kinase vulnerability identification. bioRxiv, preprint. doi: 10.1101/2019.12.22.886523
  2. Gerosa, L.; Chidley, C.; Froehlich, F.; Sanchez, G.; Lim, S.K.; Muhlich, J.; Chen, J.-Y.; Baker, G.J.; Schapiro, D.; Shi, T.; Yi, L.; Nicora, C.D.; Claas, A.; Lauffenburger, D.A.; Qian, W.-J.; Wiley, H.S.; Sorger, P.K. Sporadic ERK pulses drive non-genetic resistance in drug-adapted BRAFV600E melanoma cells. bioRxiv, preprint. doi: 10.1101/762294
  3. Zahnreich, S.; Weber, B.; Rösch, G.; Schindler, D.; Schmidberger, H. Compromised repair of radiation-induced DNA double-strand breaks in Fanconi anemia fibroblasts in G2. DNA Repair, 2020, 96, 102992. doi: 10.1016/j.dnarep.2020.102992
  4. Agote-Aran, A.; Schmucker, S.; Jerabkova, K.; Jmel Boyer, I.; Berto, A.; Pacini, L.; Ronchi, P.; Kleiss, C.; Guerard, L.; Schwab, Y.; Moine, H.; Mandel, J.-L.; Jacquemont, S.; Bagni, C.; Sumara, I. Spatial control of nucleoporin condensation by fragile X-related proteins. EMBO Journal, 2020, 39(20), e104467. doi: 10.15252/embj.2020104467
  5. Shunatova, N.; Borisenko, I. Proliferating activity in a bryozoan lophophore. PeerJ, 2020, 8, e9179. doi: 10.7717/peerj.9179
  6. Wang, S.P.; Cao, S.; Arhatte, M.; Li, D.; Shi, Y.; Kurz, S.; Hu, J.; Wang, L.; Shao, J.; Atzberger, A.; Wang, Z.; Wang, C.; Zang, W.; Fleming, I.; Wettschureck, N:, Honoré, E.; Offermanns, S. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nature Communications, 2020, 11, 2303. doi: 10.1038/s41467-020-16026-w
  7. Peeler, D.J.; Luera, N.; Horner, P.J.; Pun, S.H.; Sellers, D.L. Polyplex transfection from intracerebroventricular delivery is not significantly affected by traumatic brain injury. Journal of Controlled Release, 2020, 322, 149–156. doi: 10.1016/j.jconrel.2020.03.025
  8. Melms, J.C.; Vallabhaneni, S.; Mills, C.E.; Yapp, C.; Chen, J.-Y.; Morelli, E.; Waszyk, P.; Kumar, S.; Deming, D.; Moret, N.; Rodriguez, S.; Subramanian, K.; Rogava, M.; Cartwright, A.N.R.; Luoma, A.; Mei, S.; Brinker, T.J.; Miller, D.M.; Spektor, A.; Schadendorf, D.; Riggi, N.; Wucherpfennig, K.W.; Sorger, P.K.; Izar, B. Inhibition of Haspin kinase promotes cell-intrinsic and extrinsic anti-tumor activity. Cancer Research, 2020, 80(4), 798–810. doi: 10.1158/0008-5472.CAN-19-2330
  9. Li, Z.; Pinch, B.J.; Olson, C.M.; Donovan, K.A.; Nowak, R.P.; Mills, C.E.; Scott, D.A.; Doctor, Z.M.; Eleuteri, N.A.; Chung, M.; Sorger, P.K.; Fischer, E.S.; Gray, N.S. Development and Characterization of a Wee1 Kinase Degrader. Cell Chemical Biology, 2020, 27(1), 57–65.e9. doi: 10.1016/j.chembiol.2019.10.013
  10. Wang, Z.; Cui, M.; Shah, A.M.; Ye, W.; Tan, W.; Min, Y.-L.; Botten, G.A.; Shelton, J.M.; Liu, N.; Bassel-Duby, R.; Olson, E.N. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proceedings of the National Academy of Sciences of the U.S.A., 2019, 116(37), 18455–18465. doi: 10.1073/pnas.1905824116
  11. Morais, C.M.; Cunha, P.P.; Melo, T.; Cardoso, A.M.; Domingues, P.; Domingues, M.R.; Pedroso de Lima, M.C.; Jurado, A.S. Glucosylceramide synthase silencing combined with the receptor tyrosine kinase inhibitor axitinib as a new multimodal strategy for glioblastoma. Human Molecular Genetics, 2019, 28(21), 3664–3679. doi: 10.1093/hmg/ddz152
  12. Sharma, P.; Mesci, P.; Carromeu, C.; McClatchy, D.R.; Schiapparelli, L.; Yates, J.R.; Muotri, A.R.; Cline, H.T. Exosomes regulate neurogenesis and circuit assembly. Proceedings of the National Academy of Sciences of the U.S.A., 2019, 116(32), 16086–16094. doi: 10.1073/pnas.1902513116
  13. Graber-Feesl, C.L.; Pederson, K.D.; Aney, K.J.; Shima, N. Mitotic DNA Synthesis Is Differentially Regulated between Cancer and Noncancerous Cells. Molecular Cancer Research, 2019, 17(8), 1687–1698. doi: 10.1158/1541-7786.MCR-19-0057
  14. Olson, C.M.; Liang, Y.; Leggett, A.; Park, W.D.; Li, L.; Mills, C.E.; Elsarrag, S.Z.; Ficarro, S.B.; Zhang, T.; Düster, R.; Geyer, M.; Sim, T.; Marto, J.A.; Sorger, P.K.; Westover, K.D.; Lin, C.Y.; Kwiatkowski, N.; Gray, N.S. Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chemical Biology, 2019, 26(6), 792–803.e10. doi: 10.1016/j.chembiol.2019.02.012
  15. Hernandez-Segura, A.; Brandenburg, S.; Demaria, M. Induction and Validation of Cellular Senescence in Primary Human Cells. Journal of Visualized Experiments, 2018, 136, e57782. doi: 10.3791/57782

FAM NHS ester, 6-isomer

  1. Sasaki, K.; Harada, M.; Yoshikawa, T.; Tagawa, H.; Harada, Y.; Yonemitsu, Y.; Ryujin, T.; Kishimura, A.; Mori, T.; Katayama, Y. Fc-Binding Antibody-Recruiting Molecules Targeting Prostate-Specific Membrane Antigen: Defucosylation of Antibody for Efficacy Improvement. ChemRxiv, preprint. doi: 10.26434/chemrxiv.12654602.v1
  2. Pinals, R.L.; Yang, D.; Lui, A.; Cao, W.; Landry, M.P. Corona exchange dynamics on carbon nanotubes by multiplexed fluorescence monitoring. Journal of the American Chemical Society, 2020, 142(3), 1254–1264. doi: 10.1021/jacs.9b09617
  3. Evans, L.E.; Jones, K.; Cheeseman, M.D. Targeting secondary protein complexes in drug discovery: studying the druggability and chemical biology of the HSP70/BAG1 complex. Chemical Communications, 2017, 53(37), 5167–5170. doi: 10.1039/c7cc01376k
  4. Warminski, M.; Sikorski, P.J.; Warminska, Z.; Lukaszewicz, M.; Kropiwnicka, A.; Zuberek, J.; Darzynkiewicz, E.; Kowalska, J.; Jemielity, J. Amino-functionalized 5' cap analogs as tools for site-specific sequence-independent labeling of messenger RNA. Bioconjugate Chemistry, 2017, 28(7), 1978–1992. doi: 10.1021/acs.bioconjchem.7b00291
  5. Horning, D.P.; Joyce, G.F. Amplification of RNA by an RNA polymerase ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35), 9786–9791. doi: 10.1073/pnas.1610103113

FAM Phosphoramidite, 6-Isomer

  1. Zhou, Z.; Liu, S.; Zhang, Y.; Yang, X.; Ma, Y.; Guan, Z.; Wu, Y.; Zhang, L.; Yang, Z. Reductive nanocomplex encapsulation of cRGD-siRNA conjugates for enhanced targeting to cancer cells. International Journal of Nanomedicine, 2017, 12, 7255–7272. doi: 10.2147/ijn.S136726

FAM alkyne, 5-isomer

  1. Warminski, M.; Kowalska, J.; Jemielity, J. Solid-Phase Synthesis of RNA 5'-Azides and Their Application for Labeling, Ligation, and Cyclization Via Click Chemistry. Current Protocols in Nucleic Acid Chemistry, 2020, 82(1), e112. doi: 10.1002/cpnc.112
  2. Sokolova, V.; Nzou, G.; van der Meer, S.B.; Ruks, T.; Heggen, M.; Loza, K.; Hagemann, N.; Murke, F.; Giebel, B.; Hermann, D.M.; Atala, A.J.; Epple, M. Ultrasmall gold nanoparticles (2 nm) can penetrate and enter cell nuclei in an in vitro 3D brain spheroid model. Acta Biomaterialia, 2020, 111, 349–362. doi: 10.1016/j.actbio.2020.04.023
  3. Rojas-Sánchez, L.; Loza, K.; Epple, M. Synthesis and intracellular tracing surface-functionalized calcium phosphate nanoparticles by super-resolution microscopy (STORM). Materialia, 2020, 12, 100773. doi: 10.1016/j.mtla.2020.100773
  4. Synakewicz, M.; Bauer, D.; Rief, M.; Itzhaki, L.S. Bioorthogonal protein-DNA conjugation methods for force spectroscopy. Scientific Reports, 2019, 9, 13820. doi: 10.1038/s41598-019-49843-1
  5. van der Meer, S.B.; Loza, K.; Wey, K.; Heggen, M.; Beuck, C.; Bayer, P.; Epple, M. Click Chemistry on the Surface of Ultrasmall Gold Nanoparticles (2 nm) for Covalent Ligand Attachment Followed by NMR Spectroscopy , 2019, 35(22), 7191–7204. doi: 10.1021/acs.langmuir.9b00295
  6. Rojas-Sánchez, L.; Sokolova, V.; Riebe, S.; Voskuhl, J.; Epple, M. Covalent Surface Functionalization of Calcium Phosphate Nanoparticles with Fluorescent Dyes by Copper-Catalysed and by Strain-Promoted Azide-Alkyne Click Chemistry. ChemNanoMat, 2019, 5(4), 436–446. doi: 10.1002/cnma.201800509
  7. Liang, S.; Guan, Y.; Zhang, Y. Layer-by-Layer Assembly of Microgel Colloidal Crystals via Photoinitiated Alkyne–Azide Click Reaction. ACS Omega, 2019, 4(3), 5650–5660. doi: 10.1021/acsomega.9b00354
  8. Ganapathy, U.S.; Bai, L.; Wei, L.; Eckartt, K.A.; Lett, C.M.; Previti, M.L.; Carrico, I.S.; Seeliger, J.C. Compartment-Specific Labeling of Bacterial Periplasmic Proteins by Peroxidase-Mediated Biotinylation. ACS Infectious Diseases, 2018, 4(6), 918–925. doi: 10.1021/acsinfecdis.8b00044
  9. Stadler, D.; Siribbal, S.M.; Gessner, I.; Öz, S.; Ilyas, S.; Mathur, S. Asymmetric attachment and functionalization of plasmonic nanoparticles on ceramic interfaces. Journal of Nanostructure in Chemistry, 2018, 8(1), 33–44. doi: 10.1007/s40097-018-0252-y
  10. Shi, P.; Ju, E.; Yan, Z.; Gao, N.; Wang, J.; Hou, J.; Zhang, Y.; Ren, J.; Qu, X. Spatiotemporal control of cell-cell reversible interactions using molecular engineering. Nature communications, 2016, 7, 13088. doi: 10.1038/ncomms13088
  11. Lu, X.; Jia, F.; Tan, X.; Wang, D.; Cao, X.; Zheng, J.; Zhang, K. Effective Antisense Gene Regulation via Noncationic, Polyethylene Glycol Brushes. Journal of the American Chemical Society, 2016, 138(29), 9097–9100. doi: 10.1021/jacs.6b05787
  12. Ilnitskaya, E.V.; Kononevich, Y.N.; Muzafarov, A.M.; Rzhevskiy, S.A.; Shadrin, I.A.; Babaev, E.V.; Martynov, V.I.; Pakhomov, A.A. Preparation and application of a BODIPY-labeled probe for a real-time polymerase chain reaction. Russian Journal of Bioorganic Chemistry, 2015, 41(4), 451–453. doi: 10.1134/S1068162015040068

FAM alkyne, 6-isomer

  1. Machado, Y.; Duinkerken, S.; Hoepflinger, V.; Mayr, M.; Korotchenko, E.; Kurtaj, A.; Pablos, I.; Steiner, M.; Stoecklinger, A.; Lübbers, J.; Schmid, M.; Ritter, U.; Scheiblhofer, S.; Ablinger, M.; Wally, V.; Hochmann, S.; Raninger, A.M.; Strunk, D.; van Kooyk, Y.; Thalhamer, J.; Weiss, R. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy. Journal of Controlled Release, 2017, 266, 87–99. doi: 10.1016/j.jconrel.2017.09.020
  2. Shi, P.; Ju, E.; Yan, Z.; Gao, N.; Wang, J.; Hou, J.; Zhang, Y.; Ren, J.; Qu, X. Spatiotemporal control of cell-cell reversible interactions using molecular engineering. Nature communications, 2016, 7, 13088. doi: 10.1038/ncomms13088

FAM azide, 5-isomer

  1. Haider, N.; Dutt, P.; van de Kooij, B.; Yaffe, M.B.; Stambolic, V. NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity. bioRxiv, preprint. doi: 10.1101/516971
  2. Ramey-Ward, A.N.; Su, H.; Salaita, K. Mechanical stimulation of adhesion receptors using light-responsive nanoparticle actuators enhances myogenesis. ACS Applied Materials & Interfaces, 2020, 12(32), 35903–35917. doi: 10.1021/acsami.0c08871
  3. Kim, D.; Singh, N.; Waldemer-Streyer, R.J.; Yoon, M.-S.; Chen, J. Muscle-derived TRAIL negatively regulates myogenic differentiation. Experimental Cell Research, 2020, 394(1), 112165. doi: 10.1016/j.yexcr.2020.112165
  4. Pink, M.; Verma, N.; Schmitz-Spanke, S. Benchmark dose analyses of toxic endpoints in lung cells provide sensitivity and toxicity ranking across metal oxide nanoparticles and give insights into the mode of action. Toxicology Letters, 2020, 331, 218–226. doi: 10.1016/j.toxlet.2020.06.012
  5. Nozeret, K.; Boucharlat, A.; Agou, F.; Buddelmeijer, N. A sensitive fluorescence-based assay to monitor enzymatic activity of the essential integral membrane protein Apolipoprotein N-acyltransferase (Lnt). Scientific Reports, 2019, 9, 15978. doi: 10.1038/s41598-019-52106-8
  6. Synakewicz, M.; Bauer, D.; Rief, M.; Itzhaki, L.S. Bioorthogonal protein-DNA conjugation methods for force spectroscopy. Scientific Reports, 2019, 9, 13820. doi: 10.1038/s41598-019-49843-1
  7. Son, K.; You, J.-S.; Yoon, M.-S.; Dai, C.; Kim, J.H.; Khanna, N.; Banerjee, A.; Martinis, S.A.; Han, G.; Han, J.M.; Kim, S.; Chen, J. Nontranslational function of leucyl-tRNA synthetase regulates myogenic differentiation and skeletal muscle regeneration. Journal of Clinical Investigation, 2019, 130, 2088–2093. doi: 10.1172/JCI122560
  8. Feltes, M.; Moores, S.; Gale, S.E.; Krishnan, K.; Mydock-McGrane, L.; Covey, D.F.; Ory, D.S.; Schaffer, J.E. Synthesis and characterization of diazirine alkyne probes for the study of intracellular cholesterol trafficking. Journal of Lipid Research, 2019, 60(3), 707–716. doi: 10.1194/jlr.D091470
  9. Delasoie, J.; Rossier, J.; Haeni, L.; Rothen-Rutishauser, B.; Zobi, F. Slow-targeted release of a ruthenium anticancer agent from vitamin B12 functionalized marine diatom microalgae. Dalton Transactions, 2018, 47(48), 17221–17232. doi: 10.1039/c8dt02914h
  10. Ta, D.T.; Vanella, R.; Nash, M.A. Bioorthogonal Elastin-like Polypeptide Scaffolds for Immunoassay Enhancement. ACS Applied Materials & Interfaces, 2018, 10(36), 30147–30154. doi: 10.1021/acsami.8b10092
  11. Dutta, D.; Lai, K.-Y.; Reyes-Ordoñez, A.; Chen, J.; van der Donk, W.A. Lanthionine synthetase C-like protein 2 (LanCL2) is Important for Adipogenic Differentiation. Journal of Lipid Research, 2018, 59(8), 1433–1445. doi: 10.1194/jlr.M085274
  12. Ganapathy, U.S.; Bai, L.; Wei, L.; Eckartt, K.A.; Lett, C.M.; Previti, M.L.; Carrico, I.S.; Seeliger, J.C. Compartment-Specific Labeling of Bacterial Periplasmic Proteins by Peroxidase-Mediated Biotinylation. ACS Infectious Diseases, 2018, 4(6), 918–925. doi: 10.1021/acsinfecdis.8b00044
  13. Su, H.; Liu, Z.; Liu, Y.; Ma, V.P.-Y.; Blanchard, A.; Zhao, J.; Galior, K.; Dyer, R.B.; Salaita, K. Light-Responsive Polymer Particles as Force Clamps for the Mechanical Unfolding of Target Molecules. Nano Letters, 2018, 18(4), 2630–2636. doi: 10.1021/acs.nanolett.8b00459
  14. Long, M.J.C.; Urul, D.A.; Chawla, S.; Lin, H.-Y.; Zhao, Y.; Haegele, J.A.; Wang, Y.; Aye, Y. Precision Electrophile Tagging in Caenorhabditis elegans. Biochemistry, 2018, 57(2), 216–220. doi: 10.1021/acs.biochem.7b00642
  15. Penn, C.; Yang, K.; Zong, H.; Lim, J.-Y.; Cole, A.; Yang, D.; Baker, J.; Goonewardena, S.N.; Buckanovich, R.J. Therapeutic Impact of Nanoparticle Therapy Targeting Tumor Associated Macrophages. Molecular Cancer Therapeutics, 2018, 17(1), 96–106. doi: 10.1158/1535-7163.MCT-17-0688
  16. Fatona, A.; Berry, R.M.; Brook, M.A.; Moran-Mirabal, J.M. Versatile Surface Modification of Cellulose Fibres and Cellulose Nanocrystals through Modular Triazinyl Chemistry. Chemistry of Materials, 2018, 30(7), 2424–2435. doi: 10.1021/acs.chemmater.8b00511
  17. Pink, M.; Verma, N.; Zerries, A.; Schmitz-Spanke, S. Dose-dependent response to 3-nitrobenzanthrone exposure in human urothelial cancer cells. Chemical Research in Toxicology, 2017, 30(10), 1855–1864. doi: 10.1021/acs.chemrestox.7b00174
  18. Guttenplan, A.P.M.; Young, L.J.; Matak-Vinkovic, D.; Kaminski, C.F.; Knowles, T.P.J.; Itzhaki, L.S. Nanoscale click-reactive scaffolds from peptide self-assembly. Journal of Nanobiotechnology, 2017, 15, 70. doi: 10.1186/s12951-017-0300-7
  19. Ruhl, K.E; Rovis, T. Visible Light-Gated Cobalt Catalysis for a Spatially and Temporally Resolved [2+2+2] Cycloaddition. Journal of the American Chemical Society, 2016, 138(48), 15527–15530. doi: 10.1021/jacs.6b08792
  20. Berte, N.; Piee-Staffa, A.; Piecha, N.; Wang, M.; Borgmann, K.; Kaina, B.; Nikolova, T. Targeting homologous recombination by pharmacological inhibitors enhances the killing response of glioblastoma cells treated with alkylating drugs. Molecular Cancer Therapeutics, 2016, 15(11), 2665–2678. doi: 10.1158/1535-7163.mct-16-0176
  21. Ngo, J.T.; Adams, S.R.; Deerinck, T.J.; Boassa, D.; Rodriguez-Rivera, F.; Palida, S.F.; Bertozzi, C.R.; Ellisman, M.H.; Tsien, R.Y. Click-EM for imaging metabolically tagged nonprotein biomolecules. Nature Chemical Biology, 2016, 12(6), 459–465. doi: 10.1038/nchembio.2076
  22. Li, Z.; Liu, Z.; Chen, Z.; Ju, E.; Li, W.; Ren, J.; Qu, X. Bioorthogonal chemistry for selective recognition, separation and killing bacteria over mammalian cells. Chemical Communications, 2016, 52(17), 3482–3485. doi: 10.1039/c5cc10625g

FAM azide, 6-isomer

  1. Haider, N.; Dutt, P.; van de Kooij, B.; Yaffe, M.B.; Stambolic, V. NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity. bioRxiv, preprint. doi: 10.1101/516971
  2. Ramey-Ward, A.N.; Su, H.; Salaita, K. Mechanical stimulation of adhesion receptors using light-responsive nanoparticle actuators enhances myogenesis. ACS Applied Materials & Interfaces, 2020, 12(32), 35903–35917. doi: 10.1021/acsami.0c08871
  3. Reed, S.A.; Brzovic, D.A.; Takasaki, S.S.; Boyko, K.V.; Antos, J.M. Efficient Sortase-Mediated Ligation Using a Common C-Terminal Fusion Tag. Bioconjugate Chemistry, 2020, 31(5), 1463–1473. doi: 10.1021/acs.bioconjchem.0c00156
  4. Morais, C.M.; Cunha, P.P.; Melo, T.; Cardoso, A.M.; Domingues, P.; Domingues, M.R.; Pedroso de Lima, M.C.; Jurado, A.S. Glucosylceramide synthase silencing combined with the receptor tyrosine kinase inhibitor axitinib as a new multimodal strategy for glioblastoma. Human Molecular Genetics, 2019, 28(21), 3664–3679. doi: 10.1093/hmg/ddz152
  5. Feltes, M.; Moores, S.; Gale, S.E.; Krishnan, K.; Mydock-McGrane, L.; Covey, D.F.; Ory, D.S.; Schaffer, J.E. Synthesis and characterization of diazirine alkyne probes for the study of intracellular cholesterol trafficking. Journal of Lipid Research, 2019, 60(3), 707–716. doi: 10.1194/jlr.D091470
  6. Ruhl, K.E; Rovis, T. Visible Light-Gated Cobalt Catalysis for a Spatially and Temporally Resolved [2+2+2] Cycloaddition. Journal of the American Chemical Society, 2016, 138(48), 15527–15530. doi: 10.1021/jacs.6b08792
  7. Berte, N.; Piee-Staffa, A.; Piecha, N.; Wang, M.; Borgmann, K.; Kaina, B.; Nikolova, T. Targeting homologous recombination by pharmacological inhibitors enhances the killing response of glioblastoma cells treated with alkylating drugs. Molecular Cancer Therapeutics, 2016, 15(11), 2665–2678. doi: 10.1158/1535-7163.mct-16-0176
  8. Ngo, J.T.; Adams, S.R.; Deerinck, T.J.; Boassa, D.; Rodriguez-Rivera, F.; Palida, S.F.; Bertozzi, C.R.; Ellisman, M.H.; Tsien, R.Y. Click-EM for imaging metabolically tagged nonprotein biomolecules. Nature Chemical Biology, 2016, 12(6), 459–465. doi: 10.1038/nchembio.2076
  9. Kryvalap, Y.; Lo, C.-W.; Manuylova, E.; Baldzizhar, R.; Jospe, N.; Czyzyk, J. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus. Journal of Biological Chemistry, 2016, 291(1), 266–278. doi: 10.1074/jbc.M115.687848

FAM maleimide, 6-isomer

  1. Nojoumi, S.; Ma, Y.; Schwagerus, S.; Hackenberger, C.P.R.; Budisa, N. In-Cell Synthesis of Bioorthogonal Alkene Tag S-Allyl-Homocysteine and Its Coupling with Reprogrammed Translation. International Journal of Molecular Sciences, 2019, 20(9), 2299. doi: 10.3390/ijms20092299
  2. Sauer, F.; Klemm, T.; Kollampally, R.B.; Tessmer, I.; Nair, R.K.; Popov, N.; Kisker, C. Differential Oligomerization of the Deubiquitinases USP25 and USP28 Regulates Their Activities. Molecular Cell, 2019, 74(3), 421–435.e10. doi: 10.1016/j.molcel.2019.02.029
  3. Yu, C.; Tang, J.; Loredo, A.; Chen, Y.; Jung, S.Y.; Jain, A.; Gordon, A.; Xiao, H. Proximity-Induced Site-Specific Antibody Conjugation. Bioconjugate Chemistry, 2018, 29(11), 3522–3526. doi: 10.1021/acs.bioconjchem.8b00680

JOE azide, 5- isomer

  1. Taskova, M.; Astakhova, K. Fluorescent Oligonucleotides with Bis(prop-2-yn-1-yloxy)butane-1,3-diol Scaffold Rapidly Detect Disease-Associated Nucleic Acids. Bioconjugate Chemistry, 2019, 30(12), 3007–3012. doi: 10.1021/acs.bioconjchem.9b00746
  2. Nåbo, L.J.; Madsen, C.S.; Jensen, K.J.; Kongsted, J.; Astakhova, K. Ultramild Protein-Mediated Click Chemistry Creates Efficient Oligonucleotide Probes for Targeting and Detecting Nucleic Acids. ChemBioChem, 2015, 16(8), 1163–1167. doi: 10.1002/cbic.201500145

PEP azide

  1. Taskova, M.; Astakhova, K. Fluorescent Oligonucleotides with Bis(prop-2-yn-1-yloxy)butane-1,3-diol Scaffold Rapidly Detect Disease-Associated Nucleic Acids. Bioconjugate Chemistry, 2019, 30(12), 3007–3012. doi: 10.1021/acs.bioconjchem.9b00746

Pentynoic acid STP ester

  1. Antonov, S.A.; Novosadova, E.V.; Kobylansky, A.G.; Tarantul, V.Z.; Grivennikov, I.A. A Hybrid Detection Method Based on Peroxidase-mediated Signal Amplification and Click Chemistry for Highly Sensitive Background-free Immunofluorescent Staining. Journal of Histochemistry & Cytochemistry, 2019, 67(10), 771–782. doi: 10.1369/0022155419864113
  2. Jandl, B.; Sedghiniya, S.; Carstens, A.; Astakhova, K. Peptide–Fluorophore Hydrogel as a Signal Boosting Approach in Rapid Detection of Cancer DNA. ACS Omega, 2019, 4(9), 13889–13895. doi: 10.1021/acsomega.9b01586
  3. Samuelsen, S.V.; Maity, A.; Nybo, M.; Macaubas, C.; Lønstrup, L.; Balboni, I.M.; Mellins, E.D.; Astakhova, K. Novel Phospholipid-Protein Conjugates Allow Improved Detection of Antibodies in Patients with Autoimmune Diseases. PLoS One, 2016, 11(6), e0156125. doi: 10.1371/journal.pone.0156125
  4. Maity, A.; Macaubas, C.; Mellins, E.; Astakhova, K. Synthesis of Phospholipid-Protein Conjugates as New Antigens for Autoimmune Antibodies. Molecules, 2015, 20(6), 10253–10263. doi: 10.3390/molecules200610253

Perylene azide

  1. Taskova, M.; Astakhova, K. Fluorescent Oligonucleotides with Bis(prop-2-yn-1-yloxy)butane-1,3-diol Scaffold Rapidly Detect Disease-Associated Nucleic Acids. Bioconjugate Chemistry, 2019, 30(12), 3007–3012. doi: 10.1021/acs.bioconjchem.9b00746
  2. Westergaard Mulberg, M.; Taskova, M.; Thomsen, R.P.; Okholm, A.H.; Kjems, J.; Astakhova, K. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods. Chembiochem, 2017, 18(16), 1599–1603. doi: 10.1002/cbic.201700125
  3. Okholm, A.; Kjems, J.; Astakhova, K. Fluorescence detection of natural RNA using rationally designed "clickable" oligonucleotide probes. RSC Advances, 2014, 4(86), 45653–45656. doi: 10.1039/c4ra07165d

Pico488 dsDNA quantification reagent, 200x solution in DMSO

  1. Covarrubias-Zambrano, O.; Shrestha, T.B.; Pyle, M.; Montes-Gonzalez, M.L.; Troyer, D.L.; Bossmann, S.H. Development of a gene delivery system composed of a cell penetrating peptide and a nontoxic polymer. ACS Applied Bio Materials, in press. doi: 10.1021/acsabm.0c00561
  2. Norred, S.E.; Dabbs, R.M.; Chauhan, G.; Caveney, P.M.; Collier, C.P.; Abel, S.M.; Simpson, M.L. Synergistic interactions between confinement and macromolecular crowding spatially order transcription and translation in cell-free expression. bioRxiv, preprint. doi: 10.1101/445544
  3. Cuccaro, A.; De Marchi, L.; Oliva, M.; Sanches, M.V.; Freitas, R.; Casu, V.; Monni, G.; Miragliotta, V.; Pretti, C. Sperm quality assessment in Ficopomatus enigmaticus (Fauvel, 1923): Effects of selected organic and inorganic chemicals across salinity levels. Ecotoxicology and Environmental Safety, 2021, 207, 111219. doi: 10.1016/j.ecoenv.2020.111219
  4. Kosmider, B.; Lin, C.-R.; Karim, L.; Tomar, D.; Vlasenko, L.; Marchetti, N.; Bolla, S.; Madesh, M.; Criner, G.J.; Bahmed, K. Mitochondrial dysfunction in human primary alveolar type II cells in emphysema. EBioMedicine, 2019, 46, 305–316. doi: 10.1016/j.ebiom.2019.07.063
  5. Pantelidou, C.; Sonzogni, O.; De Oliveria Taveira, M.; Mehta, A.K.; Kothari, A.; Wang, D.; Visal, T.; Li, M.K.; Pinto, J.; Castrillon, J.A.; Cheney, E.M.; Bouwman, P.; Jonkers, J.; Rottenberg, S.; Guerriero, J.L.; Wulf, G.M.; Shapiro, G.I. PARP Inhibitor Efficacy Depends on CD8+ T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer. Cancer Discovery, 2019, 9(6), 722–737. doi: 10.1158/2159-8290.CD-18-1218

Pyrene azide 2

  1. Wanat, P.; Walczak, S.; Wojtczak, B.A.; Nowakowska, M.; Jemielity, J.; Kowalska, J. Ethynyl, 2-Propynyl, and 3-Butynyl C-Phosphonate Analogues of Nucleoside Di- and Triphosphates: Synthesis and Reactivity in CuAAC. Organic Letters, 2015, 17(12), 3062–3065. doi: 10.1021/acs.orglett.5b01346

R110 azide, 5- isomer

  1. Nåbo, L.J.; Madsen, C.S.; Jensen, K.J.; Kongsted, J.; Astakhova, K. Ultramild Protein-Mediated Click Chemistry Creates Efficient Oligonucleotide Probes for Targeting and Detecting Nucleic Acids. ChemBioChem, 2015, 16(8), 1163–1167. doi: 10.1002/cbic.201500145
  2. Shieh, P.; Siegrist, M.S.; Cullen, A.J.; Bertozzi, C.R. Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes. Proceedings of the National Academy of Sciences of the U.S.A., 2014, 111(15), 5456–5461. doi: 10.1073/pnas.1322727111
  3. Okholm, A.; Kjems, J.; Astakhova, K. Fluorescence detection of natural RNA using rationally designed "clickable" oligonucleotide probes. RSC Advances, 2014, 4(86), 45653–45656. doi: 10.1039/c4ra07165d

R110 azide, 6- isomer

  1. Shieh, P.; Siegrist, M.S.; Cullen, A.J.; Bertozzi, C.R. Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes. Proceedings of the National Academy of Sciences of the U.S.A., 2014, 111(15), 5456–5461. doi: 10.1073/pnas.1322727111

R6G alkyne, 6-isomer

  1. Gao, F.; Hunter, A.; Qu, S.; Hoffman, J.R.; Gao, P.; Phillip, W.A. Interfacial Junctions Control Electrolyte Transport Through Charge-Patterned Membranes. ACS Nano, 2019, 13(7), 7655–7664. doi: 10.1021/acsnano.9b00780

ROX NHS ester, 5-isomer

  1. Konopka, C.J.; Wozniak, M.; Hedhli, J.; Ploska, A.; Schwartz-Duval, A.; Siekierzycka, A.; Pan, D.; Munirathinam, G.; Dobrucki, I.T.; Kalinowski, L.; Dobrucki, L.W. Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles. Theranostics, 2018, 8(18), 5012–5024. doi: 10.7150/thno.24791

ROX NHS ester, 6- isomer

  1. Konopka, C.J.; Wozniak, M.; Hedhli, J.; Ploska, A.; Schwartz-Duval, A.; Siekierzycka, A.; Pan, D.; Munirathinam, G.; Dobrucki, I.T.; Kalinowski, L.; Dobrucki, L.W. Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles. Theranostics, 2018, 8(18), 5012–5024. doi: 10.7150/thno.24791

ROX azide, 5- isomer

  1. Feltes, M.; Moores, S.; Gale, S.E.; Krishnan, K.; Mydock-McGrane, L.; Covey, D.F.; Ory, D.S.; Schaffer, J.E. Synthesis and characterization of diazirine alkyne probes for the study of intracellular cholesterol trafficking. Journal of Lipid Research, 2019, 60(3), 707–716. doi: 10.1194/jlr.D091470
  2. Verardi, R.; Kim, J.-S.; Ghirlando, R.; Banerjee, A. Structural Basis for Substrate Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase. Structure, 2017, 25(9), 1337–1347. doi: 10.1016/j.str.2017.06.018
  3. Bak, D.W.; Pizzagalli, M.D.; Weerapana, E. Identifying Functional Cysteine Residues in the Mitochondria. ACS Chemical Biology, 2017, 12(4), 947–957. doi: 10.1021/acschembio.6b01074
  4. Nåbo, L.J.; Madsen, C.S.; Jensen, K.J.; Kongsted, J.; Astakhova, K. Ultramild Protein-Mediated Click Chemistry Creates Efficient Oligonucleotide Probes for Targeting and Detecting Nucleic Acids. ChemBioChem, 2015, 16(8), 1163–1167. doi: 10.1002/cbic.201500145
  5. Astakhova, I.K.; Wengel, J. Interfacing Click Chemistry with Automated Oligonucleotide Synthesis for the Preparation of Fluorescent DNA Probes Containing Internal Xanthene and Cyanine Dyes. Chemistry - a European Journal, 2013, 19(3), 1112-1122. doi: 10.1002/chem.201202621
  6. Liboska, R.; Ligasová, A.; Strunin, D.; Rosenberg, I.; Koberna, K. Most Anti-BrdU Antibodies React with 2'-Deoxy-5-Ethynyluridine ‒ The Method for the Effective Suppression of This Cross-Reactivity. PLoS ONE, 2012, 7(12), e51679. doi: 10.1371/journal.pone.0051679

ROX reference dye for qPCR

  1. Schmidt, N.; Kollewe, A.; Constantin, C.E.; Henrich, S.; Ritzau-Jost, A.; Bildl, W.; Saalbach, A.; Hallermann, S.; Kulik, A.; Fakler, B.; Schulte, U. Neuroplastin and Basigin Are Essential Auxiliary Subunits of Plasma Membrane Ca2+-ATPases and Key Regulators of Ca2+ Clearance. Neuron, 2017, 96(4), 827–838.e9. doi: 10.1016/j.neuron.2017.09.038

Sulfo-Cyanine3 NHS ester

  1. Baker, Y.; Yuan, L.; Chen J.; Belle, R.; Carlisle, R.; El-Sagheer, A.; Brown, T. Expanding the Chemical Repertoire of DNA Nanomaterials Generated by Rolling Circle Amplification. ChemRxiv, preprint. doi: 10.26434/chemrxiv.12566963.v1
  2. Kang, J.; Lhee, S.; Lee, J.K.; Zare, R.N.; Nam, H.G. Restricted intramolecular rotation of fluorescent molecular rotors at the periphery of aqueous microdroplets in oil. Scientific Reports, 2020, 10, 16859. doi: 10.1038/s41598-020-73980-7
  3. Shuvalova, M.L.; Kopylov, A.T.; Mazurov, D.V.; Pichugin, A.V.; Bovin, N.V.; Filatov, A.V. CD44-Associated Tn Antigen as a New Biomarkerof Tumor Cells with Aberrant Glycosylation. Biochemistry (Moscow), 2020, 85(9), 1064–1071. doi: 10.1134/S0006297920090060
  4. Park, B.G.; Kim, Y.J.; Min, J.H.; Cheong, T.-C.; Nam, S.H.; Cho, N.-H.; Kim, Y.K.; Lee, K.B. Assessment of Cellular Uptake Efficiency According to Multiple Inhibitors of Fe3O4-Au Core-Shell Nanoparticles: Possibility to Control Specific Endocytosis in Colorectal Cancer Cells. Nanoscale Research Letters, 2020, 15, 165. doi: 10.1186/s11671-020-03395-w
  5. Wang, C.; Fernández de Ávila, B.E.; Mundaca-Uribe, R.; Lopez-Ramirez, M.A.; Ramírez-Herrera, D.E.; Shukla, S.; Steinmetz, N.F.; Wang, J. Active Delivery of VLPs Promotes Anti-Tumor Activity in a Mouse Ovarian Tumor Model. Small, 2020, 16(20), e1907150. doi: 10.1002/smll.201907150
  6. Saez Talens, V.; Arias-Alpizar, G.; Makurat, D.M.M.; Davis, J.; Bussmann, J.; Kros, A.; Kieltyka, R.E. Stab2-Mediated Clearance of Supramolecular Polymer Nanoparticles in Zebrafish Embryos. Biomacromolecules, 2020, 21(3), 1060–1068. doi: 10.1021/acs.biomac.9b01318
  7. Choi, J.; Marks, J.; Zhang, J.; Chen, D.-H.; Wang, J.; Vázquez-Laslop, N.; Mankin, A.S:; Puglisi, J.D. Dynamics of the context-specific translation arrest by chloramphenicol and linezolid. Nature Chemical Biology, 2020, 16, 310–317. doi: 10.1038/s41589-019-0423-2
  8. Song, P.; Shen, J.; Ye, D.; Dong, B.; Wang, F.; Pei, H.; Wang, J.; Shi, J.; Wang, L.; Xue, W.; Huang, Y.; Huang, G.; Zuo, X.; Fan, C. Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. Nature Communications, 2020, 11, 838. doi: 10.1038/s41467-020-14664-8
  9. Tesarova, B.; Dostalova, S.; Smidova, V.; Goliasova, Z.; Skubalova, Z.; Michalkova, H.; Hynek, D.; Michalek, P.; Polanska, H.; Vaculovicova, M.; Hacek, J.; Eckschlager, T.; Stiborova, M.; Pires, A.S.; Neves, A.R.M.; Abrantes, A.M.; Rodrigues, T.; Matafome, P.; Botelho, M.F.; Teixeira, P.; Mendes, F.; Heger, Z. Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine. Applied Materials Today, 2020, 18, 100501. doi: 10.1016/j.apmt.2019.100501
  10. Taghian, T.; Metelev, V.G.; Zhang, S.; Bogdanov, A.A. Imaging NF-κB activity in a murine model of early stage diabetes. FASEB Journal, 2020, 34(1), 1198–1210. doi: 10.1096/fj.201801147r
  11. Umakoshi, T.; Fukuda, S.; Iino, R.; Uchihashi, T.; Ando, T. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies. Biochimica et Biophysica Acta, 2020, 1864(2), 129325. doi: 10.1016/j.bbagen.2019.03.011
  12. Antonov, S.A.; Novosadova, E.V.; Kobylansky, A.G.; Tarantul, V.Z.; Grivennikov, I.A. A Hybrid Detection Method Based on Peroxidase-mediated Signal Amplification and Click Chemistry for Highly Sensitive Background-free Immunofluorescent Staining. Journal of Histochemistry & Cytochemistry, 2019, 67(10), 771–782. doi: 10.1369/0022155419864113
  13. Binkley, M.M.; Cui, M.; Li, W.; Tan, S.; Berezin, M.Y.; Meacham, J.M. Design, modeling, and experimental validation of an acoustofluidic platform for nanoscale molecular synthesis and detection. Physics of Fluids, 2019, 31, 082007. doi: 10.1063/1.5100149
  14. Huang, S.; Qi, J.; deQuilettes, D.W.; Huang, M.; Lin, C.-W.; Bardhan, N.M.; Dang, X.; Bulović, V.; Belcher, A.M. M13 Virus-Based Framework for High Fluorescence Enhancement. Small, 2019, 15(28), 1901233. doi: 10.1002/smll.201901233
  15. Kravchuk, O.I.; Lyupina, Y.V.; Erokhov, P.A.; Finoshin, A.D.; Adameyko, K.I.; Mishyna, M.Y.; Moiseenko, A.V.; Sokolova, O.S.; Orlova, O.V.; Beljelarskaya, S.N.; Serebryakova, M.V.; Indeykina, M.I.; Bugrova, A.E.; Kononikhin, A.S.; Mikhailov, V.S. Characterization of the 20S proteasome of the lepidopteran, Spodoptera frugiperda. Biochimica et Biophysica Acta - Proteins and Proteomics, 2019, 1867(9), 840–853. doi: 10.1016/j.bbapap.2019.06.010
  16. Ni, C.-W.; Wei, Y.-J.; Shen, Y.-I.; Lee, I.-R. Long-Range Hairpin Slippage Reconfiguration Dynamics in Trinucleotide Repeat Sequences. The Journal of Physical Chemistry Letters, 2019, 10, 3985–3990. doi: 10.1021/acs.jpclett.9b01524
  17. Barnett, D.; Hall, J.; Haab, B. Automated identification and quantification of signals in multichannel immunofluorescence images: the SignalFinder platform. The American Journal of Pathology, 2019, 189(7), 1402–1412. doi: 10.1016/j.ajpath.2019.03.011
  18. Kam, A.; Loo, S.; Dutta, B.; Sze, S.K.; Tam, J.P. Plant-derived mitochondria-targeting cysteine-rich peptide modulates cellular bioenergetics. Journal of Biological Chemistry, 2019, 294(11), 4000–4011. doi: 10.1074/jbc.RA118.006693
  19. Cao, P.; Wei, X.; Awal, R.P.; Müller, R.; Wall, D. A Highly Polymorphic Receptor Governs Many Distinct Self-Recognition Types within the Myxococcales Order. mBio, 2019, 10, e02751-18. doi: 10.1128/mBio.02751-18
  20. Meena, G.G.; Jain, A.; Parks, J.; Stambaugh, A.; Patterson, J.; Hawkins, A.; Schmidt, H. Integration of sample preparation and analysis on an optofluidic chip for multi-target disease detection. Lab on a Chip, 2018, 18(23), 3678–3686. doi: 10.1039/c8lc00966j
  21. Hyun, J.Y.; Kim, S.; Lee, H.S.; Shin, I. A Glycoengineered Enzyme with Multiple Mannose-6-Phosphates Is Internalized into Diseased Cells to Restore Its Activity in Lysosomes. Cell Chemical Biology, 2018, 25(10), 1255–1267.e8. doi: 10.1016/j.chembiol.2018.07.011
  22. Zadeh, P.S.N.; do Valle Gomes, M.Z.; Abrahamsson, M.; Palmqvist, A.; Åkerman, B. Measuring Viscosity inside Mesoporous Silica Using Protein-Bound Molecular Rotor Probe. Physical Chemistry Chemical Physics, 2018, 20(36), 23202–23213. doi: 10.1039/C8CP01063C
  23. Gu, R.; Oweida, T.; Yingling, Y.G.; Chilkoti, A.; Zauscher, S. Enzymatic synthesis of nucleobase-modified single-stranded DNA offers tunable resistance to nuclease degradation. Biomacromolecules, 2018, 19(8), 3525–3535. doi: 10.1021/acs.biomac.8b00816
  24. Zadeh, P.S.N.; do Valle Gomes, M.Z.; Åkerman, B.; Palmqvist, A.E.C. Förster resonance energy transfer study of the improved biocatalytic conversion of CO2 to formaldehyde by co-immobilization of enzymes in siliceous mesostructured cellular foams. ACS Catalysis, 2018, 8(8), 7251–7260. doi: 10.1021/acscatal.8b01806
  25. Stambaugh, A.; Parks, J.W.; Stott, M.A.; Meena, G.G.; Hawkins, A.R.; Schmidt, H. Optofluidic detection of Zika nucleic acid and protein biomarkers using multimode interference multiplexing. Biomedical Optics Express, 2018, 9(8), 3725–3730. doi: 10.1364/BOE.9.003725
  26. Selnihhin, D.; Sparvath, S.M.; Preus, S.; Birkedal, V.; Andersen, E.S. Multi-Fluorophore DNA Origami Beacon as a Biosensing Platform. ACS Nano, 2018, 12(6), 5699–5708. doi: 10.1021/acsnano.8b01510
  27. Sallada, N.D.; Dunn, K.J.; Berger, B.W. A structural and functional role for disulfide bonds in a class II hydrophobin. Biochemistry, 2018, 57(5), 645–653. doi: 10.1021/acs.biochem.7b01166
  28. Zabara, A.; Meikle, T.G.; Trenker, R.; Yao, S.; Newman, J.; Peat, T.S.; Separovic, F.; Conn, C.E.; Call, M.J.; Call, M.E.; Landau, E.M.; Drummond, C.J. Lipidic Cubic Phase-Induced Membrane Protein Crystallization: Interplay Between Lipid Structure, Mesophase Properties, and Crystallogenesis. Crystal Growth and Design, 2017, 17(11), 5667–5674. doi: 10.1021/acs.cgd.7b00519
  29. Ozcelik, D.; Jain, A.; Stambaugh, A.; Stott, M.A.; Parks, J.W.; Hawkins, A.; Schmidt, H. Scalable Spatial-Spectral Multiplexing of Single-Virus Detection Using Multimode Interference Waveguides. Scientific Reports, 2017, 7, 12199. doi: 10.1038/s41598-017-12487-0
  30. Shi, X.; Yu, C.Y.Y.; Su, H.; Kwok, R.T.K.; Jiang, M.; He, Z.; Lam, J.W.Y.; Tang, B.Z. A Red-emissive antibody–AIEgen conjugate for turn-on and wash-free imaging of specific cancer cells. Chemical Science, 2017, 8(10), 7014–7024. doi: 10.1039/C7SC01054K
  31. Schneider, J.R.; Carias, A.M.; Bastian, A.R.; Cianci, G.C.; Kiser, P.F.; Veazey, R.S.; Hope, T.J. Long-term direct visualization of passively transferred fluorophore-conjugated antibodies. Journal of Immunological Methods, 2017, 450, 66–72. doi: 10.1016/j.jim.2017.07.009
  32. Huang, T.-Y.; Chang, C.-K.; Kao, Y.-F.; Chin, C.-H.; Ni, C.-W.; Hsu, H.-Y.; Hu, N.-J.; Hsieh, L.-C.; Chou, S.-H.; Lee, I.-R.; Hou, M.-H. Parity-dependent hairpin configurations of repetitive DNA sequence promote slippage associated with DNA expansion. Proceedings of the National Academy of Sciences of the USA, 2017, 114(36), 9535–9540. doi: 10.1073/pnas.1708691114
  33. Barnett, D.; Liu, Y.; Partyka, K.; Huang, Y.; Tang, H.; Hostetter, G.; Brand, R.E.; Singhi, A.D.; Drake, R.R.; Haab, B.B. The CA19-9 and Sialyl-TRA Antigens Define Separate Subpopulations of Pancreatic Cancer Cells. Scientific Reports, 2017, 7, 4020. doi: 10.1038/s41598-017-04164-z
  34. Korkmaz, E.; Friedrich, E.E.; Ramadan, M.H.; Erdos, G.; Mathers, A.R.; Ozdoganlar, O.B.; Washburn, N.R.; Falo, Jr, L.D. Tip-Loaded Dissolvable Microneedle Arrays Effectively Deliver Polymer-Conjugated Antibody Inhibitors of Tumor-Necrosis-Factor-Alpha Into Human Skin. Journal of Pharmaceutical Sciences, 2016, 105(11), 3453–3457. doi: 10.1016/j.xphs.2016.07.008
  35. Zhou, L.; Wang, K.; Wu, Z.; Dong, H.; Sun, H.; Cheng, X.; Zhang, H.; Zhou, H.; Jia, C.; Jin, Q.; Mao, H.; Coll, J.-L.; Zhao, J. Investigation of Controllable Nanoscale Heat-Denatured Bovine Serum Albumin Films on Graphene. Langmuir, 2016, 32(48), 12623–12631. doi: 10.1021/acs.langmuir.6b03296
  36. Zhang, X.; MIn, L.; Jia, C. Application of Wavelet Transform Algorithm and Rolling Ball Algorithm in Single Molecule Fluorescence Resonance Energy Transfer Images. Progress in Biochemistry and Biophysics, 2016, 43(10), 997–1003. doi: 10.16476/j.pibb.2016.0218
  37. Søndergaard, S.; Aznauryan, M.; Haustrup, E.K.; Schiøtt, B.; Birkedal, V.; Corry, B. Dynamics of Fluorescent Dyes Attached to G-Quadruplex DNA and their Effect on FRET Experiments. ChemPhysChem, 2015, 16(12), 2562–2570. doi: 10.1002/cphc.201500271
  38. Wang, W.; Kapur, A.; Ji, X.; Safi, M.; Palui, G.; Palomo, V.; Dawson, P.E.; Mattoussi, H. Photoligation of an Amphiphilic Polymer with Mixed Coordination Provides Compact and Reactive Quantum Dots. Journal of the American Chemical Society, 2015, 137(16), 5438–5451. doi: 10.1021/jacs.5b00671
  39. Reid, D.A.; Keegan, S.; Leo-Macias, A.; Watanabe, G.; Strande, N.T.; Chang, H.H.; Oksuz, B.A.; Fenyo, D.; Lieber, M.R.; Ramsden, D.A.; Rothenberg, E. Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proceedings of the National Academy of Sciences of the U.S.A., 2015, 112(20), E2575–E2584. doi: 10.1073/pnas.1420115112
  40. Glembockyte, V.; Lincoln, R.; Cosa, G. Cy3 Photoprotection Mediated by Ni2+ for Extended Single-Molecule Imaging: Old Tricks for New Techniques. Journal of the American Chemical Society, 2015, 137(3), 1116–1122. doi: 10.1021/ja509923e
  41. Martell, D.J.; Joshi, C.P.; Gaballa, A.; Santiago, A.G.; Chen, T.-Y.; Jung, W.; Helmann, J.D.; Chen, P. Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription. Proceedings of the National Academy of Sciences of the U.S.A., 2015, 112(44), 13467–13472. doi: 10.1073/pnas.1515231112
  42. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  43. Wang, W.; Ji, X.; Na, H.B.; Safi, M.; Smith, A.; Palui, G.; Perez, J.M.; Mattoussi, H. Design of a Multi-Dopamine-Modified Polymer Ligand Optimally Suited for Interfacing Magnetic Nanoparticles with Biological Systems. Langmuir, 2014, 30(21), 6197-6208. doi: 10.1021/la500974r
  44. Aldeek, F.; Muhammed, M.A.H.; Palui, G.; Zhan, N.; Mattoussi, H. Growth of Highly Fluorescent Polyethylene Glycol- and Zwitterion-Functionalized Gold Nanoclusters. ACS Nano, 2013, 7(3), 2509-2521. doi: 10.1021/nn305856t
  45. Zhan, N.; Palui, G.; Safi, M.; Ji, X.; Mattoussi, H. Multidentate Zwitterionic Ligands Provide Compact and Highly Biocompatible Quantum Dots. Journal of the American Chemical Society, 2013, 135(37), 13786-13795. doi: 10.1021/ja405010v
  46. Kim, W.-J.; Kim, A.; Huh, C.; Park, C.W.; Ah, C.S.; Kim, B.K.; Yang, J.-H.; Chung, K.H.; Choi, Y.H.; Hong, J. et al. Photo selective protein immobilization using bovine serum albumin. Applied Surface Science, 2012, 261, 880-889. doi: 10.1016/j.apsusc.2012.08.111

Sulfo-Cyanine3 alkyne

  1. Tugel, U.; Casas, M.G.; Wiltschi, B. Site-Specific Incorporation of Non-canonical Amino Acids by Amber Stop Codon Suppression in Escherichia coli. Peptide and Protein Engineering (Springer Protocols Handbooks), 2020, 267–281. doi: 10.1007/978-1-0716-0720-6_14
  2. Sokolova, V.; Nzou, G.; van der Meer, S.B.; Ruks, T.; Heggen, M.; Loza, K.; Hagemann, N.; Murke, F.; Giebel, B.; Hermann, D.M.; Atala, A.J.; Epple, M. Ultrasmall gold nanoparticles (2 nm) can penetrate and enter cell nuclei in an in vitro 3D brain spheroid model. Acta Biomaterialia, 2020, 111, 349–362. doi: 10.1016/j.actbio.2020.04.023
  3. Tobola, F.; Sylvander, E.; Gafko, C.; Wiltschi, B. `Clickable lectins': bioorthogonal reactive handles facilitate the directed conjugation of lectins in a modular fashion. Interface Focus, 2019, 9(2), 20180072. doi: 10.1098/rsfs.2018.0072
  4. Rambarran, T.; Gonzaga, F.; Fatona, A.; Coulson, M.; Saem, S.; Moran-Mirabal, J.; Brook, M.A. Bonding and in-channel microfluidic functionalization using the huisgen cyclization. ournal of Polymer Science Part A: Polymer Chemistry, 2018, 56(6), 589–597. doi: 10.1002/pola.28930
  5. Konishcheva, E.V.; Zhumaev, U.E.; Meier, W.P. PEO-b-PCL-b-PMOXA Triblock Copolymers: From Synthesis to Microscale Polymersomes with Asymmetric Membrane. Macromolecules, 2017, 50(4), 1512–1520. doi: 10.1021/acs.macromol.6b02743

Sulfo-Cyanine3 amine

  1. Zhang, Q.; Scigliano, A.; Biver, T.; Pucci, A.; Swager, T.M. Interfacial Bioconjugation on Emulsion Droplet for Biosensors. Bioorganic & Medicinal Chemistry, 2018, 26(19), 5307–5313. doi: 10.1016/j.bmc.2018.04.020
  2. Sobotzki, N.; Schafroth, M.A.; Rudnicka, A.; Koetemann, A.; Marty, F.; Goetze, S.; Yamauchi, Y.; Carreira, E.M.; Wollscheid, B. HATRIC-based identification of receptors for orphan ligands. Nature Communications, 2018, 9, 1519. doi: 10.1038/s41467-018-03936-z

Sulfo-Cyanine3 azide

  1. Wells, C.I.; Al-Ali, H.; Andrews, D.M.; Asquith, C.R.M.; Axtman, A.D.; Chung, M.; Dikic, I.; Ebner, D.; Elkins, J.M.; Ettmayer, P.; Fischer, C.; Frederiksen, M.; Gray, N.S.; Hatch, S.; Knapp, S.; Lee, S.; Lücking, U.; Michaelides, M.; Mills, C.E.; Müller, S.; Owen, D.; Picado, A.; Ramadan, K.; Saikatendu, K.S.; Schröder, M.; Stolz, A.; Tellechea, M.; Treiber, D.K.; Turunen, B.J.; Vilar, S.; Wang, J.; Zuercher, W.J.; Willson, T.M.; Drewry, D.H. The Kinase Chemogenomic Set (KCGS): An open science resource for kinase vulnerability identification. bioRxiv, preprint. doi: 10.1101/2019.12.22.886523
  2. Zahnreich, S.; Weber, B.; Rösch, G.; Schindler, D.; Schmidberger, H. Compromised repair of radiation-induced DNA double-strand breaks in Fanconi anemia fibroblasts in G2. DNA Repair, 2020, 96, 102992. doi: 10.1016/j.dnarep.2020.102992
  3. Agote-Aran, A.; Schmucker, S.; Jerabkova, K.; Jmel Boyer, I.; Berto, A.; Pacini, L.; Ronchi, P.; Kleiss, C.; Guerard, L.; Schwab, Y.; Moine, H.; Mandel, J.-L.; Jacquemont, S.; Bagni, C.; Sumara, I. Spatial control of nucleoporin condensation by fragile X-related proteins. EMBO Journal, 2020, 39(20), e104467. doi: 10.15252/embj.2020104467
  4. Zhang, W.; Teske, N.; Samadi, M.; Sarem, M.; Shastri, V.P. Unraveling the role of β1 integrin isoforms in cRGD-mediated uptake of nanoparticles bearing hydrophilized alkyne moieties in epithelial and endothelial cells. Acta Biomaterialia, 2020, 116, 344–355. doi: 10.1016/j.actbio.2020.08.038
  5. van der Linden, C.J.; Gupta, P.; Bhuiya, A.I.; Riddick, K.R.; Hossain, K.; Santoro, S.W. Olfactory Stimulation Regulates the Birth of Neurons That Express Specific Odorant Receptors. Cell Reports, 2020, 33(1), 108210. doi: 10.1016/j.celrep.2020.108210
  6. Keil, J.M.; Doyle, D.Z.; Qalieh, A.; Lam, M.M.; Funk, O.H.; Qalieh, Y.; Shi, L.; Mohan, N.; Sorel, A.; Kwan, K.Y. Symmetric neural progenitor divisions require chromatin-mediated homologous recombination DNA repair by Ino80. Nature Communications, 2020, 11, 3839. doi: 10.1038/s41467-020-17551-4
  7. Syga, L.; De Vries, R.H.; van Oosterhout, H.; Bartelds, R.; Boersma, A.J.; Roelfes, G.; Poolman, B. A trifunctional linker for palmitoylation and peptide and protein localization in biological membranes. ChemBioChem, 2020, 21(9), 1320–1328. doi: 10.1002/cbic.201900655
  8. Tan, M.S.Y.; Davison, D.; Sanchez, M.I.; Anderson, B.M.; Howell, S.; Snijders, A.; Edgington-Mitchell, L.E.; Deu, E. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases. PLoS One, 2020, 15(1), e0227341. doi: 10.1371/journal.pone.0227341
  9. Li, Z.; Pinch, B.J.; Olson, C.M.; Donovan, K.A.; Nowak, R.P.; Mills, C.E.; Scott, D.A.; Doctor, Z.M.; Eleuteri, N.A.; Chung, M.; Sorger, P.K.; Fischer, E.S.; Gray, N.S. Development and Characterization of a Wee1 Kinase Degrader. Cell Chemical Biology, 2020, 27(1), 57–65.e9. doi: 10.1016/j.chembiol.2019.10.013
  10. Ereskovsky, A.V.; Tokina, D.B.; Saidov, D.M.; Baghdiguian, S.; Le Goff, E.; Lavrov, A.I. Transdifferentiation and mesenchymal-to-epithelial transition during regeneration in Demospongiae (Porifera). Journal of Experimental Zoology. Part B, 2020, 334(1), 37–58. doi: 10.1002/jez.b.22919
  11. Morais, C.M.; Cunha, P.P.; Melo, T.; Cardoso, A.M.; Domingues, P.; Domingues, M.R.; Pedroso de Lima, M.C.; Jurado, A.S. Glucosylceramide synthase silencing combined with the receptor tyrosine kinase inhibitor axitinib as a new multimodal strategy for glioblastoma. Human Molecular Genetics, 2019, 28(21), 3664–3679. doi: 10.1093/hmg/ddz152
  12. Antonov, S.A.; Novosadova, E.V.; Kobylansky, A.G.; Tarantul, V.Z.; Grivennikov, I.A. A Hybrid Detection Method Based on Peroxidase-mediated Signal Amplification and Click Chemistry for Highly Sensitive Background-free Immunofluorescent Staining. Journal of Histochemistry & Cytochemistry, 2019, 67(10), 771–782. doi: 10.1369/0022155419864113
  13. Sharma, P.; Mesci, P.; Carromeu, C.; McClatchy, D.R.; Schiapparelli, L.; Yates, J.R.; Muotri, A.R.; Cline, H.T. Exosomes regulate neurogenesis and circuit assembly. Proceedings of the National Academy of Sciences of the U.S.A., 2019, 116(32), 16086–16094. doi: 10.1073/pnas.1902513116
  14. Doll, F.; Steimbach, R.; Zumbusch, A. Direct Imaging of Protein-Specific Methylation in Mammalian Cells. Chembiochem, 2019, 20(10), 1315–1325. doi: 10.1002/cbic.201800787
  15. Cohen, J.; Raviv, S.; Adir, O.; Padmanabhan, K.; Soffer, A.; Luxenburg, C. The Wave complex controls epidermal morphogenesis and proliferation by suppressing Wnt-Sox9 signaling. Journal of Cell Biology, 2019, 218(4), 1390–1406. doi: 10.1083/jcb.201807216
  16. Liu, X.; Nemeth, D.P.; McKim, D.B.; Zhu, L.; DiSabato, D.J.; Berdysz, O.; Gorantla, G.; Oliver, B.; Witcher, K.G.; Wang, Y.; Negray, C.E.; Vegesna, R.S.; Sheridan, J.F.; Godbout, J.P.; Robson, M.J.; Blakely, R.D.; Popovich, P.G.; Bilbo, S.D.; Quan, N. Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity, 2019, 50(2), 317–333.e6. doi: 10.1016/j.immuni.2018.12.012
  17. Melnychuk, N.; Klymchenko, A.S. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids. Journal of the American Chemical Society, 2018, 140(34), 10856–10865. doi: 10.1021/jacs.8b05840
  18. Hernandez-Segura, A.; Brandenburg, S.; Demaria, M. Induction and Validation of Cellular Senescence in Primary Human Cells. Journal of Visualized Experiments, 2018, 136, e57782. doi: 10.3791/57782
  19. Wong, S.Z.H.; Scott, E.P.; Mu, W.; Guo, X.; Borgenheimer, E.; Freeman, M.; Ming, G.-L.; Wu, Q.-F.; Song, H.; Nakagawa, Y. In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis. PLoS Biology, 2018, 16, e2005211. doi: 10.1371/journal.pbio.2005211
  20. Konishcheva, E.V.; Zhumaev, U.E.; Meier, W.P. PEO-b-PCL-b-PMOXA Triblock Copolymers: From Synthesis to Microscale Polymersomes with Asymmetric Membrane. Macromolecules, 2017, 50(4), 1512–1520. doi: 10.1021/acs.macromol.6b02743
  21. Sun, L.; Gai, Y.; Anderson, C.J.; Zeng, D. Highly-efficient and versatile fluorous-tagged Cu(I)-catalyzed azide–alkyne cycloaddition ligand for preparing bioconjugates. Chemical Communications, 2015, 51, 17072–17075. doi: 10.1039/C5CC06858D
  22. Haller, A.; Altman, R.B.; Souliere, M.F.; Blanchard, S.C.; Micura, R. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(11), 4188-4193. doi: 10.1073/pnas.1218062110

Sulfo-Cyanine3 carboxylic acid

  1. Cho, U.; Riordan, D.P.; Ciepla, P.; Kocherlakota, K.S.; Chen, J.K.; Harbury, P.B. Ultrasensitive optical imaging with lanthanide lumiphores. Nature Chemical Biology, 2018, 14(1), 15–21. doi: 10.1038/nchembio.2513
  2. Spears, B.R.; Marin, M.A.; Chaker, A.N.; Lampley, M.W.; Harth, E. Precise Microscale Polymeric Networks through Piezoelectronic Inkjet Printing. ACS Biomaterials Science & Engineering, 2016, 2(8), 1265–1272. doi: 10.1021/acsbiomaterials.6b00175

Sulfo-Cyanine3 maleimide

  1. Tischer, D.; Weiner, O. Optogenetic Tuning of Protein-protein Binding in Bilayers Using LOVTRAP. Bio-protocol, 2020, 10(17), e3745. doi: 10.21769/BioProtoc.3745
  2. Zhang, N.; Shi, S.; Yoo, B.; Yuan, X.; Li, W.; Zhang, S. 2D-HELS MS Seq: A General LC-MS-Based Method for Direct and de novo Sequencing of RNA Mixtures with Different Nucleotide Modifications. Journal of Visualized Experiments, 2020, e61281. doi: 10.3791/61281
  3. Jordan, T.; O’Brien, M.A.; Spatarelu, C.-P.; Luke, G.P. Antibody-Conjugated Barium Titanate Nanoparticles for Cell-Specific Targeting. ACS Applied Nano Materials, 2020, 3(3), 2636–2646. doi: 10.1021/acsanm.0c00019
  4. Wouters, S.; Vugs, W.; Arts, R.; de Leeuw, N.; Teeuwen, R.; Merkx, M. Bioluminescent antibodies through photoconjugation of protein-G-luciferase fusion proteins. Bioconjugate Chemistry, 2020, 31(3), 656–662. doi: 10.1021/acs.bioconjchem.9b00804
  5. Baksheeva, V.E.; Nemashkalova, E.L.; Firsov, A.M.; Zalevsky, A.O.; Vladimirov, V.I.; Tikhomirova, N.K.; Philippov, P.P.; Zamyatnin, A.A.; Zinchenko, D.V.; Antonenko, Y.N.; Permyakov, S.E.; Zernii, E.Y. Membrane Binding of Neuronal Calcium Sensor-1: Highly Specific Interaction with Phosphatidylinositol-3-Phosphate. Biomolecules, 2020, 10, 164. doi: 10.3390/biom10020164
  6. Zhang, N.; Shi, S.; Jia, T.Z.; Ziegler, A.; Yoo, B.; Yuan, X.; Li, W.; Zhang, S. A general LC-MS-based RNA sequencing method for direct analysis of multiple-base modifications in RNA mixtures. Nucleic Acids Research, 2019, 47(20), e125. doi: 10.1093/nar/gkz731
  7. Cundiff, M.D.; Hurley, C.M.; Wong, J.D.; Boscia, J.A.; Bashyal, A.; Rosenberg, J:; Reichard, E.L.; Nassif, N.D.; Brodbelt, J.S.; Kraut, D.A. Ubiquitin receptors are required for substrate-mediated activation of the proteasome's unfolding ability. Scientific Reports, 2019, 9, 14506. doi: 10.1038/s41598-019-50857-y
  8. Comerci, C.J.; Herrmann, J.; Yoon, J.; Jabbarpour, F.; Zhou, X.; Nomellini, J.F.; Smit, J.; Shapiro, L.; Wakatsuki, S.; Moerner, W.E. Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly. Nature Communications, 2019, 10(1), 2731. doi: 10.1038/s41467-019-10650-x
  9. Tischer, D.K.; Weiner, O.D. Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling. eLIFE, 2019, 8, e42489. doi: 10.7554/eLife.42498
  10. Ni, Y.; Arts, R.; Merkx, M. Ratiometric bioluminescent sensor proteins based on intramolecular split luciferase complementation. ACS Sensors, 2019, 4(1), 20–25. doi: 10.1021/acssensors.8b01381
  11. Agrawalla, B.K.; Wang, T.; Riegger, A.; Domogalla, M.P.; Steinbrink, K.; Dörfler, T.; Chen, X.; Boldt, F.; Lamla, M.; Michaelis, J.; Kuan, S.L.; Weil, T. Chemoselective Dual and Triple Labelling of Native and Recombinant Proteins. Bioconjugate Chemistry, 2018, 29(1), 29–34. doi: 10.1021/acs.bioconjchem.7b00675
  12. Yao, L.; Li, Q.; Guan, Y.; Zhu, X.X.; Zhang, Y. Tetrahedral, Octahedral, and Triangular Dipyramidal Microgel Clusters with Thermosensitivity Fabricated from Binary Colloidal Crystals Template and Thiol–Ene Reaction. ACS Macro Letters, 2018, 7, 80–84. doi: 10.1021/acsmacrolett.7b00935
  13. Steffen, W.; Ko, F.C.; Patel, J.; Lyamichev, V.; Albert, T.; Benz, J.; Rudolph, M.G.; Bergmann, F.; Streidl, T.; Kratzsch, P.; Boenitz-Dulat, M.; Oelschlaegel, T.; Schraeml, M. Discovery of a microbial transglutaminase enabling highly site-specific labeling of proteins. Journal of Biological Chemistry, 2017, 292(38), 15622–15635. doi: 10.1074/jbc.M117.797811
  14. Allen, C.D.; Chen, M.Y.; Trick, A.Y.; Le, D.T.; Ferguson, A.L.; Link, A.J. Thermal Unthreading of the Lasso Peptides Astexin-2 and Astexin-3. ACS Chemical Biology, 2016, 11(11), 3043–3051. doi: 10.1021/acschembio.6b00588
  15. Shebl, B., Menke, D.E.; Pennella, M.; Poudyal, R.R.; Burke, D.H.; Cornish, P.V. Preparation of ribosomes for smFRET studies: A simplified approach. Archives of Biochemistry and Biophysics, 2016, 603, 118–130. doi: 10.1016/j.abb.2016.05.010

Sulfo-Cyanine5 NHS ester

  1. Teng, F.-Y.; Wang, T.-T.; Guo, H.-L.; Xin, B.-G.; Sun, B.; Dou, S.-X.; Xi, X.-G.; Hou, X.-M. The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex. The Journal of Biological Chemistry, in press. doi: 10.1074/jbc.RA120.015492
  2. Ruano-Salguero, J.S.; Lee, K.H. Adsorptive-mediated endocytosis of Sulfo-Cy5-labeled IgG causes aberrant IgG processing by brain endothelial-like cells. Molecular Pharmaceutics, in press. doi: 10.1021/acs.molpharmaceut.0c00712
  3. Mohammad-Beigi, H.; Hayashi, Y.; Zeuthen, C.M.; Eskandari, H.; Scavenius, C.; Juul-Madsen, K.; Vorup-Jensen, T.; Enghild, J.J.; Sutherland, D.S. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. bioRxiv, preprint. doi: 10.1101/2020.02.05.924480
  4. Janczewska, M.; Szkop, M.; Pikus, G.; Kopyra, K.; Świątkowska, A.; Brygoła, K.; Karczmarczyk, U.; Walczak, J.; Żuk, M.T.; Duszak, J.; Ciach, T. PSMA targeted conjugates based on dextran. Applied Radiation and Isotopes, 2021, 167, 109439. doi: 10.1016/j.apradiso.2020.109439
  5. Kang, J.; Lhee, S.; Lee, J.K.; Zare, R.N.; Nam, H.G. Restricted intramolecular rotation of fluorescent molecular rotors at the periphery of aqueous microdroplets in oil. Scientific Reports, 2020, 10, 16859. doi: 10.1038/s41598-020-73980-7
  6. Zeng, Y.; Wang, J.; Wang, Z.; Chen, G.; Yu, J.; Li, S.; Li, Q.; Li, H.; Wen, D.; Gu, Z.; Gu, Z. Colloidal crystal microneedle patch for glucose monitoring. Nano Today, 2020, 35, 100984. doi: 10.1016/j.nantod.2020.100984
  7. Teng, Y.; Liang, H.; Zhang, Z.; He, Y.; Pan, Y.; Yuan, S.; Wu, X.; Zhao, Q.; Yang, H.; Zhou, P. Biodistribution and immunomodulatory activities of a proteoglycan isolated from Ganoderma lucidum. Journal of Functional Foods, 2020, 74, 104193. doi: 10.1016/j.jff.2020.104193
  8. FitzGerald, L.I.; Aurelio, L.; Chen, M.; Yuen, D.; Rennick, J.J.; Graham, B.; Johnston, A.P.R. A molecular sensor to quantify the localization of proteins, DNA and nanoparticles in cells. Nature Communications, 2020, 11(1), 4482. doi: 10.1038/s41467-020-18082-8
  9. Un Kim, J.; Muhammad Shahbaz, H.; Lee, H.; Kim, T.; Yang, K.; Hoon Roh, Y.; Park, J. Optimization of Phytic acid-crosslinked Chitosan Microspheres for Oral Insulin Delivery Using Responsive Surface Methodology. International Journal of Pharmaceutics, 2020, 588, 119736. doi: 10.1016/j.ijpharm.2020.119736
  10. Lix, K.; Krause, K.D.; Kim, H.; Algar, W.R. Investigation of the Energy Transfer Mechanism Between Semiconducting Polymer Dots and Organic Dyes. Journal of Physical Chemistry C, 2020, 124(31), 17387–17400. doi: 10.1021/acs.jpcc.0c04983
  11. Hilger, D.; Kumar, K.K.; Hu, H.; Pedersen, M.F.; O'Brien, E.S.; Giehm, L.; Jennings, C.; Eskici, G.; Inoue, A.; Lerch, M.; Mathiesen, J.M.; Skiniotis, G.; Kobilka, B.K. Structural insights into differences in G protein activation by family A and family B GPCRs. Science, 2020, 369, eaba3373. doi: 10.1126/science.aba3373
  12. Shukla, Sourabh and Roe, Anne Jessica and Liu, Ruifu and Veliz, Frank A. and Commandeur, Ulrich and Wald, David N. and Steinmetz, Nicole F. Affinity of plant viral nanoparticle potato virus X (PVX) towards malignant B cells enables cancer drug delivery. Biomaterials Science, 2020, 8(14), 3935–3943. doi: 10.1039/D0BM00683A
  13. Sheshachala, S.; Grösche, M.; Scherr, T.; Hu, Y.; Sun, P.; Bartschat, A.; Mikut, R; Niemeyer, C.M. Segregation of dispersed silica nanoparticles in microfluidic water in oil droplets: A kinetic study. ChemPhysChem, 2020, 21(10), 1070–1078. doi: 10.1002/cphc.201901151
  14. Sabeti Azad, M.; Okuda, M.; Cyrenne, M.; Bourge, M.; Heck, M.-P.; Yoshizawa, S.; Fourmy, D. Fluorescent Aminoglycoside Antibiotics and Methods for Accurately Monitoring Uptake by Bacteria. ACS Infectious Diseases, 2020, 6(5), 1008–1017. doi: 10.1021/acsinfecdis.9b00421
  15. Bao, X.; Qian, K.; Yao, P. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice. Journal of Nanobiotechnology, 2020, 18, 67. doi: 10.1186/s12951-020-00619-0
  16. Walker, J.A.T.; Wang, X.; Peter, K.; Kempe, K.; Corrie, S.R. Dynamic solid-state ultrasound contrast agent for monitoring pH fluctuations in vivo. ACS Sensors, 2020, 5(4), 1190–1197. doi: 10.1021/acssensors.0c00245
  17. Terekhov, S.S.; Nazarov, A.S.; Mokrushina, Y.A.; Baranova, M.N.; Potapova, N.A.; Malakhova, M.V.; Ilina, E.N.; Smirnov, I.V.; Gabibov, A.G. Deep Functional Profiling Facilitates the Evaluation of the Antibacterial Potential of the Antibiotic Amicoumacin. Antibiotics, 2020, 9(4), 157. doi: 10.3390/antibiotics9040157
  18. Li, Q.; Wang, F.; Yang, J.; Liu, D. Direct cytoplasm delivery of gold nanoparticles for real-time apoptosis detection. Nano Research, 2020, 13(3), 853–860. doi: 10.1007/s12274-020-2707-y
  19. Shukla, S.; Wang, C.; Beiss, V.; Steinmetz, N.F. Antibody Response against Cowpea Mosaic Viral Nanoparticles Improves In Situ Vaccine Efficacy in Ovarian Cancer. ACS Nano, 2020, 14(3), 2994–3003. doi: 10.1021/acsnano.9b07865
  20. Jordan, T.; O’Brien, M.A.; Spatarelu, C.-P.; Luke, G.P. Antibody-Conjugated Barium Titanate Nanoparticles for Cell-Specific Targeting. ACS Applied Nano Materials, 2020, 3(3), 2636–2646. doi: 10.1021/acsanm.0c00019
  21. Pfister, J.; Summer, D.; Petrik, M.; Khoylou, M.; Lichius, A.; Kaeopookum, P.; Kochinke, L.; Orasch, T.; Haas, H.; Decristoforo, C. Hybrid Imaging of Aspergillus fumigatus Pulmonary Infection with Fluorescent, 68Ga-Labelled Siderophores. Biomolecules, 2020, 10, 168. doi: 10.3390/biom10020168
  22. Stein, L.M.; Lhamo, R.; Cao, A.; Workinger, J.; Tinsley, I.; Doyle, R.P.; Grill, H.J.; Hermann, G.E.; Rogers, R.C.; Hayes, M.R. Dorsal vagal complex and hypothalamic glia differentially respond to leptin and energy balance dysregulation. Translational Psychiatry, 2020, 10, 90. doi: 10.1038/s41398-020-0767-0
  23. Saez Talens, V.; Arias-Alpizar, G.; Makurat, D.M.M.; Davis, J.; Bussmann, J.; Kros, A.; Kieltyka, R.E. Stab2-Mediated Clearance of Supramolecular Polymer Nanoparticles in Zebrafish Embryos. Biomacromolecules, 2020, 21(3), 1060–1068. doi: 10.1021/acs.biomac.9b01318
  24. Comeo, E.; Kindon, N.D.; Soave, M.; Stoddart, L.A.; Kilpatrick, L.; Scammells, P.J.; Hill, S.J.; and Kellam, B. Subtype-selective Fluorescent Ligands as Pharmacological Research Tools for the Human Adenosine A2A Receptor. Journal of Medicinal Chemistry, 2020, 63(5), 2656–2672. doi: 10.1021/acs.jmedchem.9b01856
  25. Landgraf, M.; Lahr, C.A.; Kaur, I.; Shafiee, A.; Sanchez-Herrero, A.; Janowicz, P.W.; Ravichandran, A.; Howard, C.B.; Cifuentes-Rius, A.; McGovern, J.A.; Voelcker, N.H.; Hutmacher, D.W. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials, 2020, 240, 119791. doi: 10.1016/j.biomaterials.2020.119791
  26. Choi, J.; Marks, J.; Zhang, J.; Chen, D.-H.; Wang, J.; Vázquez-Laslop, N.; Mankin, A.S:; Puglisi, J.D. Dynamics of the context-specific translation arrest by chloramphenicol and linezolid. Nature Chemical Biology, 2020, 16, 310–317. doi: 10.1038/s41589-019-0423-2
  27. Tesarova, B.; Dostalova, S.; Smidova, V.; Goliasova, Z.; Skubalova, Z.; Michalkova, H.; Hynek, D.; Michalek, P.; Polanska, H.; Vaculovicova, M.; Hacek, J.; Eckschlager, T.; Stiborova, M.; Pires, A.S.; Neves, A.R.M.; Abrantes, A.M.; Rodrigues, T.; Matafome, P.; Botelho, M.F.; Teixeira, P.; Mendes, F.; Heger, Z. Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine. Applied Materials Today, 2020, 18, 100501. doi: 10.1016/j.apmt.2019.100501
  28. Yong, K.; Yuen, D.; Chen, M.Z.; Johnston, A.P.R. Engineering the Orientation, Density and Flexibility of Single Domain Antibodies on Nanoparticles to Improve Cell Targeting. ACS Applied Materials & Interfaces, 2020, 12(5), 5593–5600. doi: 10.1021/acsami.9b20993
  29. Qiao, H.; Wei, Z.; Wang, Y.; Hu, N.; Sun, S.; Bai, J.; Fang, L.; Wang, Z. Focused characteristics and effects of light reflected from spherical lipid membrane of giant unilamellar vesicles. Colloids and Surfaces, B: Biointerfaces, 2020, 189, 110828. doi: 10.1016/j.colsurfb.2020.110828
  30. Cherkasov, V.R.; Mochalova, E.N.; Babenyshev, A.V.; Rozenberg, J.M.; Sokolov, I.L.; Nikitin, M.P. Antibody-Directed Metal-Organic Framework Nanoparticles for Targeted Drug Delivery. Acta Biomaterialia, 2020, 103, 223–236. doi: 10.1016/j.actbio.2019.12.012
  31. Sameshima, T.; Yukawa, T.; Hirozane, Y.; Yoshikawa, M.; Katoh, T.; Hara, H.; Yogo, T.; Miyahisa, I.; Okuda, T.; Miyamoto, M.; Naven, R. Small-scale panel comprising diverse gene family targets to evaluate compound promiscuity. Chemical Research in Toxicology, 2020, 33(1), 154–161. doi: 10.1021/acs.chemrestox.9b00128
  32. Ji, W.; Smith, P.N.; Koepsel, R.R.; Andersen, J.D.; Baker, S.L.; Zhang, L.; Carmali, S.; Myerson, J.W.; Muzykantov, V.; Russell, A.J. Erythrocytes as Carriers of Immunoglobulin-Based Therapeutics. Acta Biomaterialia, 2020, 101, 422–435. doi: 10.1016/j.actbio.2019.10.027
  33. Bowen, C.H.; Reed, T.J.; Sargent, C.J.; Mpamo, B.; Galazka, J.M.; Zhang, F. Seeded Chain-Growth Polymerization of Proteins in Living Bacterial Cells. ACS Synthetic Biology, 2019, 8(12), 2651–2658. doi: 10.1021/acssynbio.9b00362
  34. Hu, Y.; Domínguez, C.M.; Bauer, J.; Weigel, S.; Schipperges, A.; Oelschlaeger, C.; Willenbacher, N.; Keppler, S.; Bastmeyer, M.; Heißler, S.; Wöll, C.; Scharnweber, T.; Rabe, K.S.; Niemeyer, C.M. Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings. Nature Communications, 2019, 10, 5522. doi: 10.1038/s41467-019-13381-1
  35. Kholodenko, I.V.; Kalinovsky, D.V.; Svirshchevskaya, E.V.; Doronin, I.I.; Konovalova, M.V.; Kibardin, A.V.; Shamanskaya, T.V.; Larin, S.S.; Deyev, S.M.; Kholodenko, R.V. Multimerization through Pegylation Improves Pharmacokinetic Properties of scFv Fragments of GD2-Specific Antibodies. Molecules, 2019, 24(21), 3835. doi: 10.3390/molecules24213835
  36. Zhou, L.; Wu, Y.; Luo, Y.; Li, H.; Meng, X.; Liu, Cl; Xiang, J.; Zhang, P.; Gong, P.; Cai, L. Mitochondria-localized Self-reporting Small Molecule Decorated Theranostic Agents for Cancer-organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2(11), 5164–5173. doi: 10.1021/acsabm.9b00811
  37. Nieto-Orellana, A.; Li, H.; Rosiere, R.; Wauthoz, N..; Williams, H.; Monteiro, C.J.; Bosquillon, C.; Childerhouse, N.; Keegan, G.; Coghlan, D.; Mantovani, G.; Stolnik, S. Targeted PEG-poly(glutamic acid) complexes for inhalation protein delivery to the lung. Journal of Controlled Release, 2019, 316, 250–262. doi: 10.1016/j.jconrel.2019.10.012
  38. Zettlitz, K.A.; Waldmann, C.M.; Tsai, W.-T.K.; Tavaré, R.; Collins, J.; Murphy, J.M.; Wu, A.M. A Dual-Modality Linker Enables Site-Specific Conjugation of Antibody Fragments for 18F-Immuno-PET and Fluorescence Imaging. Journal of Nuclear Medicine, 2019, 60(10), 1467–1473. doi: 10.2967/jnumed.118.223560
  39. Sarker, B.; Bagchi, A.; Walter, C.; Almeida, J.; Pathak, A. Longer collagen fibers trigger multicellular streaming on soft substrates via enhanced forces and cell-cell cooperation. Journal of Cell Science, 2019, 132(18), jcs226753. doi: 10.1242/jcs.226753
  40. Tran, K.T.; Pallesen, J.S.; Solbak, S.M.Ø.; Narayanan, D.; Baig, A.; Zang, J.; Aguayo-Orozco, A.; Carmona, R.M.C.; Garcia, A.D.; Bach, A. A Comparative Assessment Study of Known Small-Molecule Keap1-Nrf2 Protein-Protein Interaction Inhibitors: Chemical Synthesis, Binding Properties, and Cellular Activity. Journal of Medicinal Chemistry, 2019, 62(17), 8028–8052. doi: 10.1021/acs.jmedchem.9b00723
  41. Wang, J.; Wang, Z.; Yu, J.; Zhang, Y.; Zeng, Y.; Gu, Z. A forskolin-conjugated insulin analog targeting endogenous glucose-transporter for glucose-responsive insulin delivery. Biomaterials Science, 2019, 7(11), 4508–4513. doi: 10.1039/c9bm01283d
  42. Gapizov, S.Sh.; Petrovskaya, L.E.; Shingarova, L.N.; Kryukova, E.A.; Boldyreva, E.F.; Lukashev, E.P.; Yakimov, S.A.; Svirshchevskaya, E.V.; Dolgikh, D.A.; Kirpichnikov, M.P. Fusion with an albumin-binding domain improves pharmacokinetics of an αvβ3-integrin binding fibronectin scaffold protein. Biotechnology and Applied Biochemistry, 2019, 66(4), 617–625. doi: 10.1002/bab.1762
  43. Jang, E.K.; Son, R.G.; Pack, S.P.;. Novel enzymatic single-nucleotide modification of DNA oligomer: prevention of incessant incorporation of nucleotidyl transferase by ribonucleotide-borate complex. Nucleic Acids Research, 2019, 47(17), e102. doi: 10.1093/nar/gkz612
  44. Bruniaux, J.; Allard-Vannier, E.; Aubrey, N.; Lakhrif, Z.; Ben Djemaa, S.; Eljack, S.; Marchais, H.; Hervé-Aubert, K.; Chourpa, I.; David, S. Magnetic nanocarriers for the specific delivery of siRNA: contribution of breast cancer cells active targeting for down-regulation efficiency. International Journal of Pharmaceutics, 2019, 569, 118572. doi: 10.1016/j.ijpharm.2019.118572
  45. Zbyszynski, P.; Toraason, I.; Repp, L.; Kwon, G.S. Probing the subcutaneous absorption of a PEGylated FUD peptide nanomedicine via in vivo fluorescence imaging. Nano Convergence, 2019, 6(1), 22. doi: 10.1186/s40580-019-0192-3
  46. Zhang, H.; Zhao, J.; Gu, X.; Wen, Y. Targeted treatment of CD22-positive non-Hodgkin's lymphoma with sialic acid–modified chitosan-PLGA hybrid nanoparticles. Journal of Nanoparticle Research, 2019, 21(7), 154. doi: 10.1007/s11051-019-4595-1
  47. Chariou, P.L.; Dogan, A.B.; Welsh, A.G.; Saidel, G.M.; Baskaran, H.; Steinmetz, N.F. Soil mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology, 2019, 14(7), 712–718. doi: 10.1038/s41565-019-0453-7
  48. Barnett, D.; Hall, J.; Haab, B. Automated identification and quantification of signals in multichannel immunofluorescence images: the SignalFinder platform. The American Journal of Pathology, 2019, 189(7), 1402–1412. doi: 10.1016/j.ajpath.2019.03.011
  49. Crawford, T.; Fletcher, N.; Veitch, M.; Gonzalez Cruz, J.L.; Pett, N.; Brereton, I.; Wells, J.W.; Mobli, M.; Tesiram, Y. Bacillus anthracis Protective Antigen Shows High Specificity for a UV Induced Mouse Model of Cutaneous Squamous Cell Carcinoma. Frontiers in Medicine, 2019, 6, 22. doi: 10.3389/fmed.2019.00022
  50. Le, D.H.T.; Commandeur, U.; Steinmetz, N.F. Presentation and Delivery of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand via Elongated Plant Viral Nanoparticle Enhances Antitumor Efficacy. ACS Nano, 2019, 13(2), 2501–2510. doi: 10.1021/acsnano.8b09462
  51. Le, D.H.T.; Méndez-López, E.; Wang, C.; Commandeur, U.; Aranda, M.A.; Steinmetz, N.F. Biodistribution of Filamentous Plant Virus Nanoparticles: Pepino Mosaic Virus versus Potato Virus X. Biomacromolecules, 2019, 20(1), 469–477. doi: 10.1021/acs.biomac.8b01365
  52. Pirutin, S.K.; Efremova, M.V.; Yusipovich, A.I.; Turovetskii, V.B.; Maksimov, G.V.; Druzhko, A.B.; Mazhuga, A.G. Visualization and Cytotoxicity of Fluorescence-Labeled Dimeric Magnetite-Gold Nanoparticles Conjugated with Prostate-Specific Membrane Antigen in Mouse Macrophages. Bulletin of Experimental Biology and Medicine, 2019, 166(3), 386–389. doi: 10.1007/s10517-019-04356-9
  53. Lalonde, T.; Shepherd, T.G.; Dhanvantari, S.; Luyt, L.G. Stapled ghrelin peptides as fluorescent imaging probes. Peptide Science, 2019, 111(1), e24055. doi: 10.1002/pep2.24055
  54. Kluender, E.J.; Hedrick, J.L.; Brown, K.A.; Rao, R.; Meckes, B.; Du, J.S.; Moreau, L.M.; Maruyama, B.; Mirkin, C.A. Catalyst discovery through megalibraries of nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(1), 40–45. doi: 10.1073/pnas.1815358116
  55. Pawar, G.N.; Parayath, N.N.; Nocera, A.L.; Bleier, B.S.; Amiji, M.M. Direct CNS delivery of proteins using thermosensitive liposome-in-gel carrier by heterotopic mucosal engrafting. PLoS One, 2018, 13, e0208122. doi: 10.1371/journal.pone.0208122
  56. Swenson, S.; Minea, R.O.; Tuan, C.D.; Thein, T.-Z.; Chen, T.C.; Markland, F.S. A Novel Venom-Derived Peptide for Brachytherapy of Glioblastoma: Preclinical Studies in Mice. Molecules, 2018, 23(11), 2918. doi: 10.3390/molecules23112918
  57. Hyun, J.Y.; Kim, S.; Lee, H.S.; Shin, I. A Glycoengineered Enzyme with Multiple Mannose-6-Phosphates Is Internalized into Diseased Cells to Restore Its Activity in Lysosomes. Cell Chemical Biology, 2018, 25(10), 1255–1267.e8. doi: 10.1016/j.chembiol.2018.07.011
  58. Pitek, A.S.; Park, J.; Wang, Y.; Gao, H.; Hu, H.; Simon, D.I.; Steinmetz, N.F. Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. Nanoscale, 2018, 10(35), 16547–16555. doi: 10.1039/c8nr02861c
  59. Zadeh, P.S.N.; do Valle Gomes, M.Z.; Abrahamsson, M.; Palmqvist, A.; Åkerman, B. Measuring Viscosity inside Mesoporous Silica Using Protein-Bound Molecular Rotor Probe. Physical Chemistry Chemical Physics, 2018, 20(36), 23202–23213. doi: 10.1039/C8CP01063C
  60. Joshi, B.P.; Hardie, J.; Mingroni, M.A.; Farkas, M.E. Surface-Modified Macrophages Facilitate Tracking of Breast Cancer-Immune Interactions. ACS Chemical Biology, 2018, 13(8), 2339–2346. doi: 10.1021/acschembio.8b00509
  61. Babič, A.; Vinet, L.; Chellakudam, V.; Janikowska, K.; Allémann, E.; Lange, N. Squalene-PEG-exendin as high-affinity constructs for pancreatic beta-cells. Bioconjugate Chemistry, 2018, 29(8), 2531–2540. doi: 10.1021/acs.bioconjchem.8b00186
  62. Zadeh, P.S.N.; do Valle Gomes, M.Z.; Åkerman, B.; Palmqvist, A.E.C. Förster resonance energy transfer study of the improved biocatalytic conversion of CO2 to formaldehyde by co-immobilization of enzymes in siliceous mesostructured cellular foams. ACS Catalysis, 2018, 8(8), 7251–7260. doi: 10.1021/acscatal.8b01806
  63. Sarker, B.; Walter, C.; Pathak, A. Direct micropatterning of {ECM} proteins on functionalized polyacrylamide hydrogels shows geometric regulation of cell-cell junctions. ACS Biomaterials Science & Engineering, 2018, 4(7), 2340–2349. doi: 10.1021/acsbiomaterials.8b00331
  64. Blackman, L.D.; Varlas, S.; Arno, M.C.; Houston, Z.H.; Fletcher, N.L.; Thurecht, K.J.; Hasan, M.; Gibson, M.I.; O'Reilly, R.K. Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. Central Science, 2018, 4(6), 718–723. doi: 10.1021/acscentsci.8b00168
  65. Selnihhin, D.; Sparvath, S.M.; Preus, S.; Birkedal, V.; Andersen, E.S. Multi-Fluorophore DNA Origami Beacon as a Biosensing Platform. ACS Nano, 2018, 12(6), 5699–5708. doi: 10.1021/acsnano.8b01510
  66. Li, H.; Zhang, Z.; Bao, X.; Xu, G.; Yao, P. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids and Surfaces, B: Biointerfaces, 2018, 170, 136–143. doi: 10.1016/j.colsurfb.2018.05.063
  67. Parayath, N.N.; Parikh, A.; Amiji, M.M. Repolarization of Tumor-Associated Macrophages in a Genetically Engineered Nonsmall Cell Lung Cancer Model by Intraperitoneal Administration of Hyaluronic Acid-Based Nanoparticles Encapsulating MicroRNA-125b. Nano Letters, 2018, 18(6), 3571–3579. doi: 10.1021/acs.nanolett.8b00689
  68. Volkov, I.L.; Lindén, M.; Aguirre Rivera, J.; Ieong, K.-W.; Metelev, M.; Elf, J.; Johansson, M. tRNA tracking for direct measurements of protein synthesis kinetics in live cells. Nature Chemical Biology, 2018, 14(6), 618–626. doi: 10.1038/s41589-018-0063-y
  69. Peng, S.; Wang, W.; Chen, C. Surface Transient Binding Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of Time Window to Seconds. The Journal of Physical Chemistry B, 2018, 122(18), 4844–4850. doi: 10.1021/acs.jpcb.8b03476
  70. Mietlicki-Baase, E.G.; Liberini, C.G.; Workinger, J.L.; Bonaccorso, R.L.; Borner, T.; Reiner, D.J.; Koch-Laskowski, K.; McGrath, L.E.; Lhamo, R.; Stein, L.M.; De Jonghe, B.C.; Holz, G.G.; Roth, C.L.; Doyle, R.P.; Hayes, M.R. A Vitamin B12 Conjugate of Exendin-4 Improves Glucose Tolerance Without Associated Nausea or Hypophagia in Rodents. Diabetes, Obesity & Metabolism, 2018, 20(5), 1223–1234. doi: 10.1111/dom.13222
  71. Kim, H.-Y.; Wang, X.; Kang, R.; Tang, D.; Boone, B.A.; Zeh, H.J.; Lotze, M.T.; Edwards, W.B. RAGE-specific single chain Fv for PET imaging of pancreatic cancer. PLoS One, 2018, 13(3), e0192821. doi: 10.1371/journal.pone.0192821
  72. Ghai, A.; Maji, D.; Rettig, M.; Chanswangphuwana, C.; DiPersio, J.; Akers, W.; Achilefu, S.; Dehdashti, F.; Vij, R.; Shokeen, M. Preclinical development of CD38-targeted [89Zr]Zr-DFO-daratumumab for imaging multiple myeloma. Journal of Nuclear Medicine, 2018, 59(2), 216–222. doi: 10.2967/jnumed.117.196063
  73. Lam, R.; Gondin, A.B.; Canals, M.; Kellam, B.; Briddon, S.J.; Graham, B.; Scammells, P.J. Fluorescently Labelled Morphine Derivatives for Bioimaging Studies. Journal of Medicinal Chemistry, 2018, 61(3), 1316–1329. doi: 10.1021/acs.jmedchem.7b01811
  74. Sallada, N.D.; Dunn, K.J.; Berger, B.W. A structural and functional role for disulfide bonds in a class II hydrophobin. Biochemistry, 2018, 57(5), 645–653. doi: 10.1021/acs.biochem.7b01166
  75. Wu, Y.; Zhang, L.; Cui, C.; Cansiz, S.; Liang, H.; Wu, C.; Teng, I.-T.; Chen, W.; Liu, Y.; Hou, W.; Zhang, X.; Tan, W. Enhanced Targeted Gene Transduction: AAV2 Vectors Conjugated to Multiple Aptamers via Reducible Disulfide Linkages. Journal of the American Chemical Society, 2018, 140(1), 2–5. doi: 10.1021/jacs.7b08518
  76. Ou, H.; Cheng, T.; Zhang, Y.; Liu, J.; Ding, Y.; Zhen, J.; Shen, W.; Xu, Y.; Yang, W.; Niu, P.; Liu, J.; An, Y.; Liu, Y.; Shi, L. Surface-adaptive Zwitterionic Nanoparticles for Prolonged Blood Circulation Time and Enhanced Cellular Uptake in Tumor Cells. Acta Biomaterialia, 2018, 65, 339–348. doi: 10.1016/j.actbio.2017.10.034
  77. Cioloboc, D.; Kennedy, C.; Boice, E.N.; Clark, E.R.; Kurtz, D.M. A Trojan Horse for Light-Triggered Bifurcated Production of Singlet Oxygen and Fenton-Reactive Iron Within Cancer Cells. Biomacromolecules, 2018, 19(1), 178–187. doi: 10.1021/acs.biomac.7b01433
  78. Lockhart, J.N.; Spoonmore, T.J.; McCurdy, M.W.; Rogers, B.R.; Guelcher, S.A.; Harth, E. Poly(glycidol) Coating on Ultrahigh Molecular Weight Polyethylene for Reduced Biofilm Growth. ACS Applied Materials & Interfaces, 2018, 10(4), 4050–4056. doi: 10.1021/acsami.7b15981
  79. Feiner-Gracia, N.; Beck, M.; Pujals, S.; Tosi, S.; Mandal, T.; Buske, C.; Linden, M.; Albertazzi, L. Super-Resolution Microscopy Unveils Dynamic Heterogeneities in Nanoparticle Protein Corona. Small, 2017, 13(41), 1701631. doi: 10.1002/smll.201701631
  80. Ozcelik, D.; Jain, A.; Stambaugh, A.; Stott, M.A.; Parks, J.W.; Hawkins, A.; Schmidt, H. Scalable Spatial-Spectral Multiplexing of Single-Virus Detection Using Multimode Interference Waveguides. Scientific Reports, 2017, 7, 12199. doi: 10.1038/s41598-017-12487-0
  81. Schneider, J.R.; Carias, A.M.; Bastian, A.R.; Cianci, G.C.; Kiser, P.F.; Veazey, R.S.; Hope, T.J. Long-term direct visualization of passively transferred fluorophore-conjugated antibodies. Journal of Immunological Methods, 2017, 450, 66–72. doi: 10.1016/j.jim.2017.07.009
  82. Pettersson, J.R.; Lanni, F.; Rule, G.S. Dual lifetimes for complexes between Glutathione-S-transferase (hGSTA1-1) and product-like ligands detected by single-molecule fluorescence imaging. Biochemistry, 2017, 56(31), 4073–4083. doi: 10.1021/acs.biochem.7b00030
  83. Barnett, D.; Liu, Y.; Partyka, K.; Huang, Y.; Tang, H.; Hostetter, G.; Brand, R.E.; Singhi, A.D.; Drake, R.R.; Haab, B.B. The CA19-9 and Sialyl-TRA Antigens Define Separate Subpopulations of Pancreatic Cancer Cells. Scientific Reports, 2017, 7, 4020. doi: 10.1038/s41598-017-04164-z
  84. George, J.T.; Srivatsan, S.G. Vinyluridine as a Versatile Chemoselective Handle for the Post-transcriptional Chemical Functionalization of RNA. Bioconjugate Chemistry, 2017, 28(5), 1529–1536. doi: 10.1021/acs.bioconjchem.7b00169
  85. Goto, A.; Yen, H.-C.; Anraku, Y.; Fukushima, S.; Lai, P.-S.; Kato, M.; Kishimura, A.; Kataoka, K. Facile Preparation of Delivery Platform of Water-Soluble Low-Molecular-Weight Drugs Based on Polyion Complex Vesicle (PICsome) Encapsulating Mesoporous Silica Nanoparticle. ACS Biomaterials Science & Engineering, 2017, 3(5), 807–815. doi: 10.1021/acsbiomaterials.6b00562
  86. Wong, A.S.M.; Czuba, E.; Chen, M.Z.; Yuen, D.; Cupic, K.I.; Yang, S.; Hodgetts, R.Y.; Selby, L.I.; Johnston, A.P.R.; Such, G.K. pH-Responsive Transferrin-pHlexi Particles Capable of Targeting Cells in Vitro. ACS Macro Letters, 2017, 6, 315–320. doi: 10.1021/acsmacrolett.7b00044
  87. Terekhov, S.S.; Smirnov, I.V.; Stepanova, A.V.; Bobik, T.V.; Mokrushina, Y.A.; Ponomarenko, N.A.; Belogurov, A.A.; Rubtsova, M.P.; Kartseva, O.V.; Gomzikova, M.O.; Moskovtsev, A.A.; Bukatin, A.S.; Dubina, M.V.; Kostryukova, E.S.; Babenko, V.V.; Vakhitova, M.T.; Manolov, A.I.; Malakhova, M.V.; Kornienko, M.A.; Tyakht, A.V.; Vanyushkina, A.A.; Ilina, E.N.; Masson, P.; Gabibov, A.g.; Altman, S. Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proceedings of the National Academy of Sciences of the U.S.A., 2017, 114(10), 2550–2555. doi: 10.1073/pnas.1621226114
  88. Masarapu, H.; Patel, B.K.; Chariou, P.L.; Hu, H.; Gulati, N.M.; Carpenter, B.L.; Ghiladi, R.A.; Shukla, S.; Steinmetz, N.F. Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules, 2017, 18(12), 4141–4153. doi: 10.1021/acs.biomac.7b01196
  89. Zhang, X.; MIn, L.; Jia, C. Application of Wavelet Transform Algorithm and Rolling Ball Algorithm in Single Molecule Fluorescence Resonance Energy Transfer Images. Progress in Biochemistry and Biophysics, 2016, 43(10), 997–1003. doi: 10.16476/j.pibb.2016.0218
  90. Ye, R.; Zhu, C.; Song, Y.; Song, J.; Fu, S.; Lu, Q.; Yang, X.; Zhu, M.-J.; Du, D.; Li, H.; Lin, Y. One-pot bioinspired synthesis of all-inclusive protein–protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk. Nanoscale, 2016, 8(45), 18980–18986. doi: 10.1039/c6nr06870g
  91. Mattheolabakis, G.; Ling, D.; Ahmad, G.; Amiji, M. Enhanced Anti-Tumor Efficacy of Lipid-Modified Platinum Derivatives in Combination with Survivin Silencing siRNA in Resistant Non-Small Cell Lung Cancer. Pharmaceutical Research, 2016, 33(12), 2943–2953. doi: 10.1007/s11095-016-2016-z
  92. Machulkin, A.E.; Garanina, A.S.; Zhironkina, O.A.; Beloglazkina, E.K.; Zyk, N.V.; Savchenko, A.G.; Kotelyanskii, V.E.; Mazhuga, A.G. Nanohybride Materials Based on Magnetite-Gold Nanoparticles for Diagnostics of Prostate Cancer: Synthesis and In Vitro Testing. Bulletin of Experimental Biology and Medicine, 2016, 161(5), 706–710. doi: 10.1007/s10517-016-3490-3
  93. Li, Hong-Jun and Du, Jin-Zhi and Liu, Jing and Du, Xiao-Jiao and Shen, Song and Zhu, Yan-Hua and Wang, Xiaoyan and Ye, Xiaodong and Nie, Shuming and Wang, Jun. Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. ACS Nano, 2016, 10(7), 6753–6761. doi: 10.1021/acsnano.6b02326
  94. Wang, H.; Tang, L.; Liu, Y.; Dobrucka, I.T.; Dobrucki, L.W.; Yin, L.; Cheng, J. In Vivo Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates. Theranostics, 2016, 6(9), 1467–1476. doi: 10.7150/thno.16003
  95. Soodgupta, D.; Zhou, H.; Beaino, W.; Lu, L.; Rettig, M.; Snee, M.; Skeath, J.; DiPersio, J.F.; Akers, W.J.; Laforest, R.; Anderson, C.J.; Tomasson, M.H.; Shokeen, M. Ex Vivo and In Vivo Evaluation of Overexpressed VLA-4 in Multiple Myeloma Using LLP2A Imaging Agents. Journal of Nuclear Medicine, 2016, 57(4), 640–645. doi: 10.2967/jnumed.115.164624
  96. Ye, R.; Zhu, C.; Song, Y.; Lu, Q.; Ge, X.; Yang, X.; Zhu, M.-J.; Du, D.; Li, H.; Lin, Y. Bioinspired Synthesis of All-in-One Organic-Inorganic Hybrid Nanoflowers Combined with a Handheld pH Meter for On-Site Detection of Food Pathogen. Small, 2016, 12(23), 3094–3100. doi: 10.1002/smll.201600273
  97. Bruckman, M.A.; Czapar, A.E.; VanMeter, A.; Randolph, L.N.; Steinmetz, N.F. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 2016, 231, 103–113. doi: 10.1016/j.jconrel.2016.02.045
  98. Sindhwani, S.; Syed, A.M.; Wilhelm, S.; Glancy, D.R.; Chen, Y.Y.; Dobosz, M.; Chan, W.C.W. Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues. ACS Nano, 2016, 10(5), 5468–5478. doi: 10.1021/acsnano.6b01879
  99. Sun, S.; Błażewska, K.M.; Kadina, A.P.; Kashemirov, B.A.; Duan, X.; Triffitt, J.T.; Dunford, J.E.; Russell, R.G.G.; Ebetino, F.H.; Roelofs, A.J.; Coxon, F.P.; Lundy, M.W.; McKenna, C.E. Fluorescent Bisphosphonate and Carboxyphosphonate Probes: A Versatile Imaging Toolkit for Applications in Bone Biology and Biomedicine. Bioconjugate Chemistry, 2016, 27(2), 329–340. doi: 10.1021/acs.bioconjchem.5b00369
  100. Wang, X.; Song, P.; Peng, L.; Tong, A.; Xiang, Y. Aggregation-Induced Emission Luminogen-Embedded Silica Nanoparticles Containing DNA Aptamers for Targeted Cell Imaging. ACS Applied Materials & Interfaces, 2016, 8(1), 609–616. doi: 10.1021/acsami.5b09644
  101. Zhao, Y.; Wei, Z.; Zhao, H.; Jia, J.; Chen, Z.; Zhang, S.; Ouyang, Z.; Ma, X.; Zhang, X. In situ Ion-Transmission Mass Spectrometry for Paper-Based Analytical Devices. Analytical Chemistry, 2016, 88(22), 10805–10810. doi: 10.1021/acs.analchem.6b03272
  102. Lehtivuori, H.; Bhattacharya, S.;Angenent-Mari, N.M.; Satyshur, K.A.; Forest, K.T. Removal of Chromophore-Proximal Polar Atoms Decreases Water Content and Increases Fluorescence in a Near Infrared Phytofluor. Frontiers in Molecular Biosciences, 2015, 2, 65. doi: 10.3389/fmolb.2015.00065
  103. Barlow, N.; Nasser, Y.; Zhao, P.; Sharma, N.; Guerrero-Alba, R.; Edgington-Mitchell, L.E.; Lieu, T.; Veldhuis, N.A.; Poole, D.P.; Conner, J.W.; Lindström, E.; Craig, A.W.; Graham, B.; Vanner, S.J.; Bunnett, N.W. Demonstration of elevated levels of active cathepsin S in dextran sulfate sodium colitis using a new activatable probe. Neurogastroenterology and Motility, 2015, 27(11), 1675–1680. doi: 10.1111/nmo.12656
  104. Singh, S.; Pal, K.; Yadav, J.; Tang, H.; Partyka, K.; Kletter, D.; Hsueh, P.; Ensink, E.; KC, B.; Hostetter, G.; Xu, H.E.; Bern, M.; Smith, D.F.; Mehta, A.S.; Brand, R.; Melcher, K.; Haab, B.B. Upregulation of Glycans Containing 3' Fucose in a Subset of Pancreatic Cancers Uncovered Using Fusion-Tagged Lectins. Journal of Proteome Research, 2015, 14(6), 2594–2605. doi: 10.1021/acs.jproteome.5b00142
  105. Hörner, A.; Hagendorn, T.; Schepers, U.; Bräse, S. Photophysical properties and synthesis of new dye-cyclooctyne conjugates for multicolor and advanced microscopy. Bioconjugate Chemistry, 2015, 26(4), 718–724. doi: 10.1021/acs.bioconjchem.5b00059
  106. Mahoney, D.; Owens, E.A.; Fan, C.; Hsiang, J.-C.; Henary, M.; Dickson, R.M. Tailoring Cyanine Dark States for Improved Optically Modulated Fluorescence Recovery. The Journal of Physical Chemistry B, 2015, 119(13), 4637–4643. doi: 10.1021/acs.jpcb.5b00777
  107. Han, Z.; Zhou, Z.; Shi, X.; Wang, J.; Wu, X.; Sun, D.; Chen, Y.; Zhu, H.; Magi-Galluzzi, C.; Lu, Z.-R. EDB fibronectin specific peptide for prostate cancer targeting. Bioconjugate Chemistry, 2015, 26(5), 830–838. doi: 10.1021/acs.bioconjchem.5b00178
  108. Aldeek, F.; Hawkins, D.; Palomo, V.; Safi, M.; Palui, G.; Dawson, P.E.; Alabugin, I.V.; Mattoussi, H. UV and Sunlight Driven Photoligation of Quantum Dots: Understanding the Photochemical Transformation of the Ligands. Journal of the American Chemical Society, 2015, 137(7), 2704–2714. doi: 10.1021/ja512802x
  109. Wen, A.M.; Infusino, M.; De Luca, A.; Kernan, D.L.; Czapar, A.E.; Strangi, G.; Steinmetz, N.F. Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics. Bioconjugate Chemistry, 2015, 26(1), 51–62. doi: 10.1021/bc500524f
  110. Nakamura, T.; Sugihara, F.; Matsushita, H.; Yoshioka, Y.; Mizukami, S.; Kikuchi, K. Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chemical Science, 2015, 6, 1986–1990. doi: 10.1039/c4sc03549f
  111. Hsueh, P.-Y.; Edman, M.C.; Sun, G.; Shi, P.; Xu, S.; Lin, Y.-a.; Cui, H.; Hamm-Alvarez, S.F.; MacKay, J.A. Tear-mediated delivery of nanoparticles through transcytosis of the lacrimal gland. Journal of Controlled Release, 2015, 208, 2–13. doi: 10.1016/j.jconrel.2014.12.017
  112. Geertsema, H.J.; Duderstadt, K.E.; van Oijen, A.M. Single-molecule observation of prokaryotic DNA replication. Methods in Molecular Biology, 2015, 1300, 219–238. doi: 10.1007/978-1-4939-2596-4_14
  113. Nooney, R.I.; White, A.; O’Mahony, C.; O’Connell, C.; Kelleher, S.M.; Daniels, S.; McDonagh, C. Investigating the colloidal stability of fluorescent silica nanoparticles under isotonic conditions for biomedical applications. Journal of Colloid and Interface Science, 2015, 456, 50–58. doi: 10.1016/j.jcis.2015.05.051
  114. Santangelo, M.F.; Sciuto, E.L.; Busacca, A.C.; Petralia, S.; Conoci, S.; Libertino, S. SiPM as miniaturised optical biosensor for DNA-microarray applications. Sensing and Bio-Sensing Research, 2015, 6, 95–98. doi: 10.1016/j.sbsr.2015.08.003
  115. Sciuto, E.L.; Santangelo, M.F.; Villaggio, G.; Sinatra, F.; Bongiorno, C.; Nicotra, G.; Libertino, S. Photo-physical characterization of fluorophore Ru(bpy)32+ for optical biosensing applications. Sensing and Bio-Sensing Research, 2015, 6, 67–71. doi: 10.1016/j.sbsr.2015.09.003
  116. Hickey, S. F.; Hammond, M.C. Structure-Guided Design of Fluorescent S-Adenosylmethionine Analogs for a High-Throughput Screen to Target SAM-I Riboswitch RNAs. Chemistry & Biology, 2014, 21(3), 345–356. doi: 10.1016/j.chembiol.2014.01.004
  117. Terekhov, S.S.; Smirnov, I.V.; Shamborant, O.G.; Zenkova, M.A.; Chernolovskaya, E.L.; Gladkikh, D.V.; Murashev, A.N.; Dyachenko, I.A.; Knorre, V.D.; Belogurov, A.A.; Ponomarenko, N.A.; Deyev, S.M.; Vlasov, V.V.; Gabibov, A.G. Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo. Acta Naturae, 2014, 6(4), 54–59
  118. Ayala-Orozco, C.; Liu, J.G.; Knight, M.W.; Wang, Y.; Day, J.K.; Nordlander, P.; Halas, N.J. Fluorescence Enhancement of Molecules Inside a Gold Nanomatryoshka. Nano Letters, 2014, 14(5), 2926-2933. doi: 10.1021/nl501027j
  119. Brand, C.; Abdel-Atti, D.; Zhang, Y.; Carlin, S.; Clardy, S.M.; Keliher, E.J.; Weber, W.A.; Lewis, J.S.; Reiner, T. In Vivo Imaging of GLP-1R with a Targeted Bimodal PET/Fluorescence Imaging Agent. Bioconjugate Chemistry, 2014, 25(7), 1323-1330. doi: 10.1021/bc500178d
  120. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  121. Li, L.-L.; Xu, J.-H.; Qi, G.-B.; Zhao, X.; Yu, F.; Wang, H. Core-Shell Supramolecular Gelatin Nanoparticles for Adaptive and "On-Demand" Antibiotic Delivery. ACS Nano, 2014, 8(5), 4975-4983. doi: 10.1021/nn501040h
  122. Viehweger, K.; Barbaro, L.; García, K.P.; Joshi, T.; Geipel, G.; Steinbach, J.; Stephan, H.; Spiccia, L.; Graham, B. EGF Receptor-Targeting Peptide Conjugate Incorporating a Near-IR Fluorescent Dye and a Novel 1,4,7-Triazacyclononane-Based 64Cu(II) Chelator Assembled via Click Chemistry. Bioconjugate Chemistry, 2014, 25(5), 1011-1022. doi: 10.1021/bc5001388
  123. Zhou, Z.; Wu, X.; Kresak, A.; Griswold, M.; Lu, Z.-R. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials, 2013, 34(31), 7683-7693. doi: 10.1016/j.biomaterials.2013.06.057
  124. Zou, C.; Loka, R.S.; Zhang, Y.; Cairo, C.W. Glycoform Remodeling Generates a Synthetic T Cell Phenotype. Bioconjugate Chemistry, 2013, 24(6), 907-914. doi: 10.1021/bc300599w

Sulfo-Cyanine5 alkyne

  1. Maklakova, S.Y.; Naumenko, V.A.; Chuprov, A.D.; Mazhuga, M.P.; Zyk, N.V.; Beloglazkina, E.K.; Majouga, A.G. Cellular uptake of N-acetyl-d-galactosamine-, N-acetyl-d-glucosamine- and d-mannose-containing fluorescent glycoconjugates investigated by liver intravital microscopy. Carbohydrate Research, 2020, 489, 107928. doi: 10.1016/j.carres.2020.107928
  2. Zhou, L.; Wu, Y.; Luo, Y.; Li, H.; Meng, X.; Liu, Cl; Xiang, J.; Zhang, P.; Gong, P.; Cai, L. Mitochondria-localized Self-reporting Small Molecule Decorated Theranostic Agents for Cancer-organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2(11), 5164–5173. doi: 10.1021/acsabm.9b00811
  3. Gao, F.; Hunter, A.; Qu, S.; Hoffman, J.R.; Gao, P.; Phillip, W.A. Interfacial Junctions Control Electrolyte Transport Through Charge-Patterned Membranes. ACS Nano, 2019, 13(7), 7655–7664. doi: 10.1021/acsnano.9b00780
  4. Rojas-Sánchez, L.; Sokolova, V.; Riebe, S.; Voskuhl, J.; Epple, M. Covalent Surface Functionalization of Calcium Phosphate Nanoparticles with Fluorescent Dyes by Copper-Catalysed and by Strain-Promoted Azide-Alkyne Click Chemistry. ChemNanoMat, 2019, 5(4), 436–446. doi: 10.1002/cnma.201800509
  5. Braselmann, E.; Wierzba, A.J.; Polaski, J.T.; Chromiński, M.; Holmes, Z.E.; Hung, S.-T.; Batan, D.; Wheeler, J.R.; Parker, R.; Jimenez, R.; Gryko, D.; Batey, R.T.; Palmer, A.E. A multicolor riboswitch-based platform for imaging of RNA in live mammalian cells. Nature Chemical Biology, 2018, 14(10), 964–971. doi: 10.1038/s41589-018-0103-7
  6. Qu, S.; Shi, Y.; Benavides, S.; Hunter, A.J.; Gao, H.; Phillip, W.A. Copolymer Nanofilters with Charge-Patterned Domains for Enhanced Electrolyte Transport. Chemistry of Materials, 2017, 29(2), 762–772. doi: 10.1021/acs.chemmater.6b04660
  7. Ngambenjawong, C.; Gustafson, H.H.; Pineda, J.M.; Kacherovsky, N.A.; Cieslewicz, M.; Pun, S.H. Serum Stability and Affinity Optimization of an M2 Macrophage-Targeting Peptide (M2pep). Theranostics, 2016, 6(9), 1403–1414. doi: 10.7150/thno.15394

Sulfo-Cyanine5 amine

  1. Mahmoud, A.M.; Morrow, J.P.; Pizzi, D.; Azizah, A.M.; Davis, T.P.; Tabor, R.F.; Kempe, K. Tuning Cellular Interactions of Carboxylic Acid Side Chain Containing Polyacrylates: The Role of Cyanine Dye Label and Side Chain Type. Biomacromolecules, 2020, 21(8), 3007–3016. doi: 10.1021/acs.biomac.0c00244
  2. Zhou, L.; Wu, Y.; Luo, Y.; Li, H.; Meng, X.; Liu, Cl; Xiang, J.; Zhang, P.; Gong, P.; Cai, L. Mitochondria-localized Self-reporting Small Molecule Decorated Theranostic Agents for Cancer-organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2(11), 5164–5173. doi: 10.1021/acsabm.9b00811
  3. Guo, A.; Durymanov, M.; Permyakova, A.; Sene, S.; Serre, C.; Reineke, J. Metal Organic Framework (MOF) Particles as Potential Bacteria-Mimicking Delivery Systems for Infectious Diseases: Characterization and Cellular Internalization in Alveolar Macrophages , 2019, 36, 53. doi: 10.1007/s11095-019-2589-4
  4. Xie, J.; Yang, C.; Liu, Q.; Li, J.; Liang, R.; Shen, C.; Zhang, Y.; Wang, K.; Liu, L.; Shezad, K.; Sullivan, M.; Xu, Y.; Shen, G.; Tao, J.; Zhu, J.; Zhang, Z. Encapsulation of Hydrophilic and Hydrophobic Peptides into Hollow Mesoporous Silica Nanoparticles for Enhancement of Antitumor Immune Response. Small, 2017, 13(40), 1701741. doi: 10.1002/smll.201701741

Sulfo-Cyanine5 azide

  1. Toyonaga, T.; Keith, B.P.; Barrow, J.B.; Schaner, M.S.; Wolber, E.A.; Beasley, C.; Huling, J.; Wang, Y.; Allbritton, N.L.; Chaumont, N.; Sadiq, T.S.; Koruda, M.j.; Rahbar, R.; Furey, T.S.; Sethupathy, P.; Sheikh, S.Z. Decreased Colonic Activin Receptor-Like Kinase 1 Disrupts Epithelial Barrier integrity and is associated with a poor clinical outcome in Crohn's disease. bioRxiv, preprint. doi: 10.1101/2020.02.21.960070
  2. Hinman, S.; Wang, Y.; Allbritton, N. Photopatterned Membranes and Chemical Gradients Enable Scalable Phenotypic Organization of Primary Human Colon Epithelial Models. ChemRxiv, preprint. doi: 10.26434/chemrxiv.9759605.v1
  3. Zahnreich, S.; Weber, B.; Rösch, G.; Schindler, D.; Schmidberger, H. Compromised repair of radiation-induced DNA double-strand breaks in Fanconi anemia fibroblasts in G2. DNA Repair, 2020, 96, 102992. doi: 10.1016/j.dnarep.2020.102992
  4. Zhang, W.; Teske, N.; Samadi, M.; Sarem, M.; Shastri, V.P. Unraveling the role of β1 integrin isoforms in cRGD-mediated uptake of nanoparticles bearing hydrophilized alkyne moieties in epithelial and endothelial cells. Acta Biomaterialia, 2020, 116, 344–355. doi: 10.1016/j.actbio.2020.08.038
  5. Park, H.; Gladstone, M.; Shanley, C.; Goodrich, R.; Guth, A. A novel cancer immunotherapy utilizing autologous tumour tissue. Vox Sanguinis, 2020, 115(6), 525–535. doi: 10.1111/vox.12935
  6. Sanman, L.E.; Chen, I.W.; Bieber, J.M.; Thorne, C.A.; Wu, L.F.; Altschuler, S.J. Generation and Quantitative Imaging of Enteroid Monolayers. Methods in Molecular Biology, 2020, 2171, 99–113. doi: 10.1007/978-1-0716-0747-3_6
  7. Shunatova, N.; Borisenko, I. Proliferating activity in a bryozoan lophophore. PeerJ, 2020, 8, e9179. doi: 10.7717/peerj.9179
  8. Cutie, S.; Payumo, A.Y.; Lunn, D.; Huang, G.N. In vitro and in vivo roles of glucocorticoid and vitamin D receptors in the control of neonatal cardiomyocyte proliferative potential. Journal of Molecular and Cellular Cardiology, 2020, 142, 126–134. doi: 10.1016/j.yjmcc.2020.04.013
  9. Tan, M.S.Y.; Davison, D.; Sanchez, M.I.; Anderson, B.M.; Howell, S.; Snijders, A.; Edgington-Mitchell, L.E.; Deu, E. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases. PLoS One, 2020, 15(1), e0227341. doi: 10.1371/journal.pone.0227341
  10. Sundin, C.; Zetterström, C.E.; Vo, D.D.; Brkljača, R.; Urban, S.; Elofsson, M. Exploring resveratrol dimers as virulence blocking agents – Attenuation of type III secretion in Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Scientific Reports, 2020, 10, 2103. doi: 10.1038/s41598-020-58872-0
  11. Long, M.J.C; Zhao, Y.; Aye, Y. Clofarabine Commandeers the RNR-α-ZRANB3 Nuclear Signaling Axis. Cell Chemical Biology, 2020, 27(1), 122–133.e5. doi: 10.1016/j.chembiol.2019.11.012
  12. Zhao, Meng and Börner, Richard and Sigel, Roland K. O. and Freisinger, Eva. Site-Specific Dual-Color Labeling of Long RNAs. Methods in Molecular Biology, 2020, 2106, 253–270. doi: 10.1007/978-1-0716-0231-7_16
  13. Judd, J.; Lovas, J.; Huang, G.N. Defined factors to reactivate cell cycle activity in adult mouse cardiomyocytes. Scientific Reports, 2019, 9, 18830. doi: 10.1038/s41598-019-55027-8
  14. Yeung, T.; Fung, O.; Bashkurov, M.; Khandani, A.; Subedar, O.; Wudwud, A.; Shaw, P.; Clarke, B.; Bartlett, J.; Rottapel, R.; Kapus, A. Avoidance of apoptotic death via a hyperploid salvage survival pathway after platinum treatment in high grade serous carcinoma cell line models. Oncotarget, 2019, 10, 6691–6712. doi: 10.18632/oncotarget.27330
  15. Yang, Z.; Joyner, A.L. YAP1 is involved in replenishment of granule cell precursors following injury to the neonatal cerebellum. Developmental Biology, 2019, 455(2), 458–472. doi: 10.1016/j.ydbio.2019.07.018
  16. Jang, E.K.; Son, R.G.; Pack, S.P.;. Novel enzymatic single-nucleotide modification of DNA oligomer: prevention of incessant incorporation of nucleotidyl transferase by ribonucleotide-borate complex. Nucleic Acids Research, 2019, 47(17), e102. doi: 10.1093/nar/gkz612
  17. Lomakin, Y.A.; Kudryaeva, A.A.; Kostin, N.N.; Terekhov, S.S.; Kaminskaya, A.N.; Zakharova, M.N.; Ivanova, M.V.; Simaniv, T.O.; Gabibov, A.G.; Belogurov, A.A. Differential Diagnostics of Active Progressing Multiple Sclerosis Using a Fluorescent Biomarker with Resonance Energy Transfer. Bulletin of Experimental Biology and Medicine, 2019, 167(3), 329–334. doi: 10.1007/s10517-019-04520-1
  18. Chariou, P.L.; Dogan, A.B.; Welsh, A.G.; Saidel, G.M.; Baskaran, H.; Steinmetz, N.F. Soil mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology, 2019, 14(7), 712–718. doi: 10.1038/s41565-019-0453-7
  19. Maisel, S.A.; Broka, D.; Atwell, B.; Bunch, T.; Kupp, R.; Singh, S.K.; Mehta, S.; Schroeder, J. Stapled EGFR peptide reduces inflammatory breast cancer and inhibits additional HER-driven models of cancer. Journal of Translational Medicine, 2019, 17, 201. doi: 10.1186/s12967-019-1939-7
  20. De France, K.J.; Badv, M.; Dorogin, J.; Siebers, E.; Panchal, V.; Babi, M.; Moran-Mirabal, J.; Lawlor, M.; Cranston, E.D.; Hoare, T. Tissue Response and Biodistribution of Injectable Cellulose Nanocrystal Composite Hydrogels. ACS Biomaterials Science & Engineering, 2019, 5(5), 2235–2246. doi: 10.1021/acsbiomaterials.9b00522
  21. Zemella, A.; Richter, T.; Thoring, L.; Kubick, S. A Combined Cell-Free Protein Synthesis and Fluorescence-Based Approach to Investigate GPCR Binding Properties. Methods in Molecular Biology, 2019, 1947, 57–77. doi: 10.1007/978-1-4939-9121-1_4
  22. Liang, S.; Guan, Y.; Zhang, Y. Layer-by-Layer Assembly of Microgel Colloidal Crystals via Photoinitiated Alkyne–Azide Click Reaction. ACS Omega, 2019, 4(3), 5650–5660. doi: 10.1021/acsomega.9b00354
  23. De France, K.J.; Babi, M.; Vapaavuori, J.; Hoare, T.; Moran-Mirabal, J.M.; Cranston, E.D. 2.5D Hierarchical Structuring of Nanocomposite Hydrogel Films Containing Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11(6), 6325–6335. doi: 10.1021/acsami.8b16232
  24. Maerle, A.V.; Simonova, M.A.; Pivovarov, V.D.; Voronina, D.V.; Drobyazina, P.E.; Trofimov, D.Y.; Alekseev, L.P.; Zavriev, S.K.; Ryazantsev, D.Y. Development of the covalent antibody-DNA conjugates technology for detection of IgE and IgM antibodies by immuno-PCR. PloS One, 2019, 14(1), e0209860. doi: 10.1371/journal.pone.0209860
  25. Marín-Caba, L.; Chariou, P.L.; Pesquera, C.; Correa-Duarte, M.A.; Steinmetz, N.F. Tobacco Mosaic Virus-Functionalized Mesoporous Silica Nanoparticles, a Wool-Ball-like Nanostructure for Drug Delivery. Langmuir, 2019, 35(1), 203–211. doi: 10.1021/acs.langmuir.8b03337
  26. Pitek, A.S.; Hu, H.; Shukla, S.; Steinmetz, N.F. Cancer Theranostic Applications of Albumin-Coated Tobacco Mosaic Virus Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10(46), 39468–39477. doi: 10.1021/acsami.8b12499
  27. van Hall-Beauvais, A.; Zhao, Y.; Urul, D.A.; Long, M.J.C.; Aye, Y. Single-Protein-Specific Redox Targeting in Live Mammalian Cells and C. elegans. Current Protocols in Chemical Biology, 2018, 10(3), e43. doi: 10.1002/cpch.43
  28. Karas, J.; Turner, B.J.; Shabanpoor, F. The Assembly of Fluorescently Labeled Peptide-Oligonucleotide Conjugates via Orthogonal Ligation Strategies. Methods in Molecular Biology, 2018, 1282, 355–363. doi: 10.1007/978-1-4939-8651-4_22
  29. Lomakin, Y.; Kudriaeva, A.; Kostin, N.; Terekhov, S.; Kaminskaya, A.; Chernov, A.; Zakharova, M.; Ivanova, M.; Simaniv, T.; Telegin, G.; Gabibov, A.; Belogurov, A. Diagnostics of autoimmune neurodegeneration using fluorescent probing. Scientific Reports, 2018, 8, 12679. doi: 10.1038/s41598-018-30938-0
  30. Franke, C.E.; Czapar, A.E.; Patel, R.B.; Steinmetz, N.F. Tobacco Mosaic Virus-Delivered Cisplatin Restores Efficacy in Platinum-Resistant Ovarian Cancer Cells. Molecular Pharmaceutics, 2018, 15(8), 2922–2931. doi: 10.1021/acs.molpharmaceut.7b00466
  31. Gupta, S.; M-Redmond, T; Meng, F.; Tidball, A.; Akil, H.; Watson, S.; Parent, J.M.; Uhler, M.; others. Fibroblast Growth Factor 2 Regulates Activity and Gene Expression of Human Postmitotic Excitatory Neuron. Journal of Neurochemistry, 2018, 145(3), 188–203. doi: 10.1111/jnc.14255
  32. Gulati, N.M.; Pitek, A.S.; Czapar, A.E.; Stewart, P.L.; Steinmetz, N.F. The in vivo fates of plant viral nanoparticles camouflaged using self-proteins: overcoming immune recognition. Journal of Materials Chemistry B, 2018, 6(15), 2204–2216. doi: 10.1039/C7TB03106H
  33. Zhao, M.; Steffen, F.D.; and Börner, R.; Schaffer, M.F.; Sigel, R.K.O.; Freisinger, E. Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Research, 2018, 46(3), e13. doi: 10.1093/nar/gkx1100
  34. Rambarran, T.; Gonzaga, F.; Fatona, A.; Coulson, M.; Saem, S.; Moran-Mirabal, J.; Brook, M.A. Bonding and in-channel microfluidic functionalization using the huisgen cyclization. ournal of Polymer Science Part A: Polymer Chemistry, 2018, 56(6), 589–597. doi: 10.1002/pola.28930
  35. Rachel, N.M.; Toulouse, J.L.; Pelletier, J.N. Transglutaminase-Catalyzed Bioconjugation Using One-Pot Metal-Free Bioorthogonal Chemistry. Bioconjugate Chemistry, 2017, 28(10), 2518–2523. doi: 10.1021/acs.bioconjchem.7b00509
  36. Gulati, N.M.; Pitek, A.S.; Steinmetz, N.F.; Stewart, P.L. Cryo-electron tomography investigation of serum albumin-camouflaged tobacco mosaic virus nanoparticles. Nanoscale, 2017, 9(10), 3408–3425. doi: 10.1039/c6nr06948g
  37. Long, M.J.; Lin, H.-Y.; Parvez, S.; Zhao, Y.; Poganik, J.R.; Huang, P.; Aye, Y. β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling. Cell Chemical Biology, 2017, 24(8), 944–957.e7. doi: 10.1016/j.chembiol.2017.06.009
  38. Parvez, S.; Long, M.J.C.; Lin, H.-Y.; Zhao, Y.; Haegele, J.A.; Pham, V.N.; Lee, D.K.; Aye, Y. T-REX on-demand redox targeting in live cells. Nature Protocols, 2016, 11(12), 2328–2356. doi: 10.1038/nprot.2016.114
  39. Farzan, V.M.; Aparin, I.O.; Veselova, O.A.; Podkolzin, A.T.; Shipulin, G.A.; Korshun, V.A.; Zatsepin, T.S. Cy5/BHQ dye-quencher pairs in fluorogenic qPCR probes: effects of charge and hydrophobicity. Analytical Methods, 2016, 8(29), 5826–5831. doi: 10.1039/c6ay01304j
  40. Pitek, A.S.; Jameson, S.A.; Veliz, F.A.; Shukla, S.; Steinmetz, N.F. Serum Albumin "Camouflage" of Plant Virus Based Nanoparticles Prevents Their Antibody Recognition and Enhances Pharmacokinetics. Biomaterials, 2016, 89, 89–97. doi: 10.1016/j.biomaterials.2016.02.032
  41. Bruckman, M.; Randolph, L.; Gulati, N.; Stewart, P.; Steinmetz, N.F. Silica mineralization of Gd(DOTA)-loaded viral nanoparticles enhances MRI relaxivity and avoids immune recognition. Journal of Materials Chemistry B, 2015, 3(38), 7503–7510. doi: 10.1039/c5tb01014d
  42. Li, F.; Dong, J.; Hu, X.; Gong, W.; Li, J.; Shen, J.; Tian, H.; Wang, J. A Covalent Approach for Site-Specific RNA Labeling in Mammalian Cells. Angewandte Chemie International Edition, 2015, 54(15), 4597–4602. doi: 10.1002/anie.201410433
  43. Maruani, A.; Smith, M.E.B.; Miranda, E.; Chester, K.A.; Chudasama, V.; Caddick, S. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nature communications, 2015, 6, 6645. doi: 10.1038/ncomms7645
  44. Nikić, I.; Kang, J.H.; Girona, G.E.; Aramburu, I.V.; Lemke, E.A. Labeling proteins on live mammalian cells using click chemistry. Nature Protocols, 2015, 10(5), 780–791. doi: 10.1038/nprot.2015.045
  45. Wen, A.M.; Infusino, M.; De Luca, A.; Kernan, D.L.; Czapar, A.E.; Strangi, G.; Steinmetz, N.F. Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics. Bioconjugate Chemistry, 2015, 26(1), 51–62. doi: 10.1021/bc500524f
  46. Maruani, A.; Alom, S.; Canavelli, P.; Lee, M.T.W.; Morgan, R.E.; Chudasama, V.; Caddick, S. A mild TCEP-based para-azidobenzyl cleavage strategy to transform reversible cysteine thiol labelling reagents into irreversible conjugates. Chemical Communications, 2015, 51, 5279–5282. doi: 10.1039/c4cc08515a
  47. Bruckman, M.A.; Randolph, L.N.; VanMeter, A.; Hern, S.; Shoffstall, A.J.; Taurog, R.E.; Steinmetz, N.F. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology, 2014, 449, 163-173. doi: 10.1016/j.virol.2013.10.035
  48. Bruckman, M.A.; Steinmetz, N.F. Chemical Modification of the Inner and Outer Surfaces of Tobacco Mosaic Virus (TMV). Methods in Molecular Biology (Virus Hybrids as Nanomaterials), 2014, 1108, 173-185. doi: 10.1007/978-1-62703-751-8_13
  49. Sloniec, J.; Resch-Genger, U.; Hennig, A. Photophysics and Release Kinetics of Enzyme-Activatable Optical Probes Based on H-Dimerized Fluorophores on Self-Immolative Linkers. The Journal of Physical Chemistry B, 2013, 117(46), 14336-14344. doi: 10.1021/jp409388b

Sulfo-Cyanine5 bis-NHS ester

  1. Pettersson, J.R.; Lanni, F.; Rule, G.S. Dual lifetimes for complexes between Glutathione-S-transferase (hGSTA1-1) and product-like ligands detected by single-molecule fluorescence imaging. Biochemistry, 2017, 56(31), 4073–4083. doi: 10.1021/acs.biochem.7b00030

Sulfo-Cyanine5 carboxylic acid

  1. Novoselova, M.V.; Abakumova, T.O.; Khlebtsov, B.N.; Zatsepin, T.S.; Lazareva, E.N.; Tuchin, V.V.; Zharov, V.P.; Gorin, D.A.; Galanzha, E.I. Optical clearing for photoacoustic lympho- and angiography beyond conventional depth limit in vivo. Photoacoustics, 2020, 20, 100186. doi: 10.1016/j.pacs.2020.100186
  2. Matoori, S.; Mooney, D.J. Near-Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16(20), 2000369. doi: 10.1002/smll.202000369
  3. Pfister, J.; Summer, D.; Petrik, M.; Khoylou, M.; Lichius, A.; Kaeopookum, P.; Kochinke, L.; Orasch, T.; Haas, H.; Decristoforo, C. Hybrid Imaging of Aspergillus fumigatus Pulmonary Infection with Fluorescent, 68Ga-Labelled Siderophores. Biomolecules, 2020, 10, 168. doi: 10.3390/biom10020168
  4. He, X.; Yuan, Z.; Kao, W.; Miller, D.; Li, S.K.; Park, Y.C. Size-Exclusive Nanoporous Biodegradable PLGA Capsules for Drug Delivery Implants and In Vivo Stability in the Posterior Segment. ACS Applied Bio Materials, 2020, 3(3), 1722–1729. doi: 10.1021/acsabm.0c00027
  5. Ecke, M.; Prassler, J.; Tanribil, P.; Müller-Taubenberger, A.; Körber, S.; Faix, J.; Gerisch, G. Formins specify membrane patterns generated by propagating actin waves. Molecular Biology of the Cell, 2020, 31(5), 373–385. doi: 10.1091/mbc.E19-08-0460
  6. Ji, W.; Smith, P.N.; Koepsel, R.R.; Andersen, J.D.; Baker, S.L.; Zhang, L.; Carmali, S.; Myerson, J.W.; Muzykantov, V.; Russell, A.J. Erythrocytes as Carriers of Immunoglobulin-Based Therapeutics. Acta Biomaterialia, 2020, 101, 422–435. doi: 10.1016/j.actbio.2019.10.027
  7. Zhou, L.; Wu, Y.; Luo, Y.; Li, H.; Meng, X.; Liu, Cl; Xiang, J.; Zhang, P.; Gong, P.; Cai, L. Mitochondria-localized Self-reporting Small Molecule Decorated Theranostic Agents for Cancer-organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2(11), 5164–5173. doi: 10.1021/acsabm.9b00811
  8. Zhu, X.; Nguyen, B.; You, J.B.; Karakolis, E.; Sinton, D.; Rochman, C. Identification of Microfibers in the Environment Using Multiple Lines of Evidence. Environmental Science and Technology, 2019, 53(20), 11877–11887. doi: 10.1021/acs.est.9b05262
  9. Ranjit, S.; Malacrida, L.; Gratton, E. Differences between FLIM phasor analyses for data collected with the Becker and Hickl SPC830 card and with the FLIMbox card. Microscopy Research and Technique, 2018, 81(9), 980–989. doi: 10.1002/jemt.23061
  10. Razgoniaeva, N.; Rogers, S.; Moroz, P.; Cassidy, J.; Zamkov, M. Improving the spectral resolution in fluorescence microscopy through shaped-excitation imaging. Methods and Applications in Fluorescence, 2018, 6(4), 045006. doi: 10.1088/2050-6120/aad81c
  11. Siltanen, C.A.; Cole, R.H.; Poust, S.; Chao, L.; Tyerman, J.; Kaufmann-Malaga, B.; Ubersax, J.; Gartner, Z.J.; Abate, A.R. An Oil-Free Picodrop Bioassay Platform for Synthetic Biology. Scientific Reports, 2018, 8, 7913. doi: 10.1038/s41598-018-25577-4
  12. Zhao, Y.; Zhang, W.; Li, C. Optimization of the conical mirror design based on Monte Carlo simulations for fluorescence molecular tomography. SPIE Proceedings: Multimodal Biomedical Imaging XIII, 2018, 10487, 104870M. doi: 10.1117/12.2290665
  13. Cho, U.; Riordan, D.P.; Ciepla, P.; Kocherlakota, K.S.; Chen, J.K.; Harbury, P.B. Ultrasensitive optical imaging with lanthanide lumiphores. Nature Chemical Biology, 2018, 14(1), 15–21. doi: 10.1038/nchembio.2513
  14. Than, A.; Liang, K.; Xu, S.; Sun, L.; Duan, H.; Xi, F.; Xu, C.; Chen, P. Transdermal Delivery of Anti-Obesity Compounds to Subcutaneous Adipose Tissue with Polymeric Microneedle Patches. Small Methods, 2017, 1(11), 1700269. doi: 10.1002/smtd.201700269
  15. Summer, D.; Grossrubatscher, L.; Petrik, M.; Michalcikova, T.; Novy, Z.; Rangger, C.; Klingler, M.; von Guggenberg, E.; Haubner, R.; Kaeopookum, P.; Haas, H.; Decristoforo, C. Developing targeted hybrid imaging probes by chelator scaffolding. Bioconjugate Chemistry, 2017, 28(6), 1722–1733. doi: 10.1021/acs.bioconjchem.7b00182
  16. Hatai, J.; Motiei, L.; Margulies, D. Analyzing Amyloid Beta Aggregates with a Combinatorial Fluorescent Molecular Sensor. Journal of the American Chemical Society, 2017, 139(6), 2136–2139. doi: 10.1021/jacs.6b10809
  17. Schlegel, I.; Muñoz-Espí, R.; Renz, P.; Lieberwirth, I.; Floudas, G.; Suzuki, Y.; Crespy, D.; Landfester, K. Crystallinity Tunes Permeability of Polymer Nanocapsules. Macromolecules, 2017, 50(12), 4725–4732. doi: 10.1021/acs.macromol.7b00667
  18. Liu, M.; Richardson, R.R.; Mountford, S.J.; Zhang, L.; Tempone, M.H.; Herzog, H.; Holliday, N.D.; Thompson, P.E. Identification of a Cyanine-Dye Labelled Peptidic Ligand for Y1R and Y4R, based upon the Neuropeptide Y C-terminal analogue, BVD-15. Bioconjugate Chemistry, 2016, 27(9), 2166–2175. doi: 10.1021/acs.bioconjchem.6b00376
  19. Gao, P.; Hunter, A.J.; Summe, M.J.; Phillip, W.A. A Method for the Efficient Fabrication of Multifunctional Mosaic Membranes by Inkjet Printing. ACS Applied Materials & Interfaces, 2016, 8(30), 19772–19779. doi: 10.1021/acsami.6b06048
  20. Calver, C.F.; Liu, H.-W.; Cosa, G. Exploiting Conjugated Polyelectrolyte Photophysics towards Monitoring Real-Time Lipid Membrane-Surface Interaction Dynamics at the Single Particle Level. Langmuir, 2015, 31(43), 11842–11850. doi: 10.1021/acs.langmuir.5b00979
  21. Lee, S.J.; Shim, Y.H.; Oh, J.-S.; Jeong, Y.-I. Park, I.-K.; Lee, H.C. Folic-acid-conjugated pullulan/poly(DL-lactide-co-glycolide) graft copolymer nanoparticles for folate-receptor-mediated drug delivery. Nanoscale Research Letters, 2015, 10, 43. doi: 10.1186/s11671-014-0706-1
  22. Tucker, K.R.; Block, E.R.; Levitan, E.S. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles. Proceedings of the National Academy of Sciences of the U.S.A., 2015, 112(32), E4485–E4494. doi: 10.1073/pnas.1503766112
  23. Lin, W.; Liu, J.; Jeffries, C.; Yang, L.; Lu, Y.; Lee, R.E.; Chen, T. Development of BODIPY FL Vindoline as a Novel and High-Affinity Pregnane X Receptor Fluorescent Probe. Bioconjugate Chemistry, 2014, 25(9), 1664-1677. doi: 10.1021/bc5002856

Sulfo-Cyanine5 maleimide

  1. Delvaux, N.A.; Mathew, B.; Rice, K.G. Fluorescent Labeling of Plasmid DNA for Gene Delivery: Implications of Dye Hydrophobicity on Labeling Efficiencies and Nanoparticle Size. Analytical Biochemistry, in press. doi: 10.1016/j.ab.2020.113895
  2. Carreras-Badosa, G.; Maslovskaja, J.; Periyasamy, K.; Urgard, E.; Padari, K.; Vaher, H.; Tserel, L.; Gestin, M.; Kisand, K.; Arukuusk, P.; Lou, C.; Langel, Ü.; Wengel, J.; Pooga, M.; Rebane, A. NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation. Biomaterials, 2020, 262, 120316. doi: 10.1016/j.biomaterials.2020.120316
  3. Shukla, Sourabh and Roe, Anne Jessica and Liu, Ruifu and Veliz, Frank A. and Commandeur, Ulrich and Wald, David N. and Steinmetz, Nicole F. Affinity of plant viral nanoparticle potato virus X (PVX) towards malignant B cells enables cancer drug delivery. Biomaterials Science, 2020, 8(14), 3935–3943. doi: 10.1039/D0BM00683A
  4. Nemec, A.A.; Tomko, R.J. A suite of PCR-based peptide tagging plasmids to permit epitope-targeted enzymatic functionalization of yeast proteins. Yeast, 2020, 37(5–6), 327–335. doi: 10.1002/yea.3471
  5. Cioloboc, D.; Kurtz, D.M. Targeted cancer cell delivery of arsenate as a reductively activated prodrug. Journal of Biological Inorganic Chemistry, 2020, 25(3), 441–449. doi: 10.1007/s00775-020-01774-3
  6. Baranova, N.; Radler, P.; Hernández-Rocamora, V.M.; Alfonso, C.; López-Pelegrin, M.; Rivas, G.; Vollmer, W.; Loose, M. Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins. Nature Microbiology, 2020, 5, 407–417. doi: 10.1038/s41564-019-0657-5
  7. Solbak, S.M.Ø.; Zang, J.; Narayanan, D.; Høj, Jakobsen, L.; Bucciarelli, S.; Softley, C.; Meier, S.; Langkilde, A.E.; Gotfredsen, C.H.; Sattler, M.; Bach, A. Developing Inhibitors of the p47phox-p22phox Protein-Protein Interaction by Fragment-Based Drug Discovery. Journal of Medicinal Chemistry, 2020, 63(3), 1156–1177. doi: 10.1021/acs.jmedchem.9b01492
  8. Ji, W.; Smith, P.N.; Koepsel, R.R.; Andersen, J.D.; Baker, S.L.; Zhang, L.; Carmali, S.; Myerson, J.W.; Muzykantov, V.; Russell, A.J. Erythrocytes as Carriers of Immunoglobulin-Based Therapeutics. Acta Biomaterialia, 2020, 101, 422–435. doi: 10.1016/j.actbio.2019.10.027
  9. Cliff, L.; Chadda, R.; Robertson, J.L. Occupancy distributions of membrane proteins in heterogeneous liposome populations. BBA Biomembranes, 2020, 1862(1), 183033. doi: 10.1016/j.bbamem.2019.183033
  10. Greene, E.R.; Goodall, E.A.; de la Peña, A.H.; Matyskiela, M.E.; Lander, G.C.; Martin, A. Specific lid-base contacts in the 26s proteasome control the conformational switching required for substrate degradation. eLife, 2019, 8, e49806. doi: 10.7554/eLife.49806
  11. Kholodenko, I.V.; Kalinovsky, D.V.; Svirshchevskaya, E.V.; Doronin, I.I.; Konovalova, M.V.; Kibardin, A.V.; Shamanskaya, T.V.; Larin, S.S.; Deyev, S.M.; Kholodenko, R.V. Multimerization through Pegylation Improves Pharmacokinetic Properties of scFv Fragments of GD2-Specific Antibodies. Molecules, 2019, 24(21), 3835. doi: 10.3390/molecules24213835
  12. Doh, J.; Tobin, S.; Beatty, K. Generation of CoilR Probe Peptides for VIPER-labeling of Cellular Proteins. Bio-protocol, 2019, 9(21), e3412. doi: 10.21769/bioprotoc.3412
  13. Cundiff, M.D.; Hurley, C.M.; Wong, J.D.; Boscia, J.A.; Bashyal, A.; Rosenberg, J:; Reichard, E.L.; Nassif, N.D.; Brodbelt, J.S.; Kraut, D.A. Ubiquitin receptors are required for substrate-mediated activation of the proteasome's unfolding ability. Scientific Reports, 2019, 9, 14506. doi: 10.1038/s41598-019-50857-y
  14. Stankowska, D.L.; Nam, M.-H.; Nahomi, R.B.; Chaphalkar, R.M.; Nandi, S.K.; Fudala, R.; Krishnamoorthy, R.R.; Nagaraj, R.H. Systemically administered peptain-1 inhibits retinal ganglion cell death in animal models: implications for neuroprotection in glaucoma. Cell Death Discovery, 2019, 5(1), 112. doi: 10.1038/s41420-019-0194-2
  15. Graham, T.G.W.; Carney, S.M.; Walter, J.C.; Loparo, J.J. A single XLF dimer bridges DNA ends during nonhomologous end joining. Nature Structural & Molecular Biology, 2018, 25(9), 877–884. doi: 10.1038/s41594-018-0120-y
  16. Torres, O.B.; Duval, A.J.; Sulima, A.; Antoline, J.F.G.; Jacobson, A.E.; Rice, K.C.; Alving, C.R.; Matyas, G.R. A rapid solution-based method for determining the affinity of heroin hapten-induced antibodies to heroin, its metabolites, and other opioids. Analytical and Bioanalytical Chemistry, 2018, 410(16), 3885–3903. doi: 10.1007/s00216-018-1060-4
  17. Liu, L.; Zhang, C.; Li, Z.; Wang, C.; Bi, J.; Yin, S.; Wang, Q.; Yu, R.; Liu, Y.D.; Su, Z. Albumin binding domain fusing R/K-X-X-R/K sequence for enhancing tumor delivery of doxorubicin. Molecular Pharmaceutics, 2017, 14(11), 3739–3749. doi: 10.1021/acs.molpharmaceut.7b00497
  18. Guo, L.Y.; Allu, P.K.; Zandarashvili, L.; McKinley, K.L.; Sekulic, N.; Dawicki-McKenna, J.M.; Fachinetti, D.; Logsdon, G.A.; Jamiolkowski, R.M.; Cleveland, D.W.; Cheeseman, I.M.; Black, B.E. Centromeres are maintained by fastening CENP-A to DNA and directing an arginine anchor-dependent nucleosome transition. Nature Communications, 2017, 8, 15775. doi: 10.1038/ncomms15775
  19. Nemudraya, A.; Kuligina, E.; Ilyichev, A.; Fomin, A.; Stepanov, G.; Savelyeva, A.; Koval, O.; Richter, V. Selection of antitumor displayed peptides for the specific delivery of the anticancer drug lactaptin. Oncology Letters, 2016, 12(6), 4547–4555. doi: 10.3892/ol.2016.5266
  20. Bruckman, M.A.; Czapar, A.E.; VanMeter, A.; Randolph, L.N.; Steinmetz, N.F. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 2016, 231, 103–113. doi: 10.1016/j.jconrel.2016.02.045
  21. Shebl, B., Menke, D.E.; Pennella, M.; Poudyal, R.R.; Burke, D.H.; Cornish, P.V. Preparation of ribosomes for smFRET studies: A simplified approach. Archives of Biochemistry and Biophysics, 2016, 603, 118–130. doi: 10.1016/j.abb.2016.05.010

Sulfo-Cyanine5.5 NHS ester

  1. Peplau, E.; De Rose, F.; Reder, S.; Mittelhaeuser, M.; Scafetta, G.; Schwaiger, M.; Weber, W.A.; Bartolazzi, A.; Skerra, A.; D'Alessandria, C. Development of a chimeric Fab directed against human galectin-3 and validation as an immune-PET tracer for the sensitive in vivo imaging of thyroid cancer. Thyroid, 2020, 30(9), 1314–1326. doi: 10.1089/thy.2019.0670
  2. Sim, T.; Lim, C.; Hoang, N.H.; Shin, Y.; Kim, J.C.; Park, J.Y.; Her, J.; Lee, E.S.; Youn, Y.S.; Oh, K.T. An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy. Pharmaceutics, 2020, 12, 839. doi: 10.3390/pharmaceutics12090839
  3. Lix, K.; Krause, K.D.; Kim, H.; Algar, W.R. Investigation of the Energy Transfer Mechanism Between Semiconducting Polymer Dots and Organic Dyes. Journal of Physical Chemistry C, 2020, 124(31), 17387–17400. doi: 10.1021/acs.jpcc.0c04983
  4. Wang, J.; Li, Y.; Li, L.; Yang, J.; Kopeček, J. Exploration and Evaluation of Therapeutic Efficacy of Drug-Free Macromolecular Therapeutics in Collagen-Induced Rheumatoid Arthritis Mouse Model. Macromolecular Bioscience, 2020, 20(5), e1900445. doi: 10.1002/mabi.201900445
  5. Chen, Q.; Gao, M.; Li, Z.; Xiao, Y.; Bai, X.; Boakye-Yiadom, K.O.; Xu, X.; Zhang, X.-Q. Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy. Journal of Controlled Release, 2020, 323, 179–190. doi: 10.1016/j.jconrel.2020.03.044
  6. Taghian, T.; Metelev, V.G.; Zhang, S.; Bogdanov, A.A. Imaging NF-κB activity in a murine model of early stage diabetes. FASEB Journal, 2020, 34(1), 1198–1210. doi: 10.1096/fj.201801147r
  7. Yin, B.; Chan, C.K.W.; Liu, S.; Hong, H.; Wong, S.H.D.; Lee, L.K.C.; Ho, L.W.C.; Zhang, L.; Leung, K.C.-F.; Choi, P.C.-L.; Bian, L.; Tian, X.Y.; Chan, M.N.; Choi, C.H.J. Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS Nano, 2019, 13(12), 14048–14069. doi: 10.1021/acsnano.9b06424
  8. Wu, X.; Zhou, J.; Wang, F.; Meng, X.; Chen, J.; Chang, T.-S.; Lee, M.; Li, G.; Li, X.; Appelman, H.D.; Kuick, R.; Wang, T.D. Detection of colonic neoplasia in vivo using near-infrared-labeled peptide targeting cMet. Scientific Reports, 2019, 9, 17917. doi: 10.1038/s41598-019-54385-7
  9. Khatri, S.; Hansen, J.; Mendes, A.C.; Chronakis, I.S.; Hung, S.-C.; Mellins, E.D.; Astakhova, K. Citrullinated Peptide Epitope Targets Therapeutic Nanoparticles to Human Neutrophils. Bioconjugate Chemistry, 2019, 30(10), 2584–2593. doi: 10.1021/acs.bioconjchem.9b00518
  10. Wang, Y.; Li, K.; Han, S.; Tian, Y.-H.; Hu, P.-C.; Xu, X.-L.; He, Y.-Q.; Pan, W.-T.; Gao, Y.; Zhang, Z.; Zhang, J.-W.; Wei, L. Chlorotoxin targets ERα/VASP signaling pathway to combat breast cancer. Cancer Medicine, 2019, 8(4), 1679–1693. doi: 10.1002/cam4.2019
  11. Ha, S.-W.; Hwang, K.; Jin, J.; Cho, A.-S.; Kim, T.Y.; Hwang, S.I.; Lee, H.J.; Kim, C.-Y. Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system. International Journal of Nanomedicine, 2019, 14, 3743–3752. doi: 10.2147/ijn.s193258
  12. Liu, R.; Li, Z.; Marvin, J.S.; Kleinfeld, D. Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nature Methods, 2019, 16, 615–618. doi: 10.1038/s41592-019-0434-7
  13. Guenter, R.E.; Aweda, T.; Carmona Matos, D.M.; Whitt, J.; Chang, A.W.; Cheng, E.Y.; Liu, X.M.; Chen, H.; Lapi, S.E.; Jaskula-Sztul, R. Pulmonary Carcinoid Surface Receptor Modulation Using Histone Deacetylase Inhibitors. Cancers, 2019, 11(6), 767. doi: 10.3390/cancers11060767
  14. Kwon, Y.-D.; Oh, J.-M.; La, M.T.; Chung, H.-J.; Lee, S.J.; Chun, S.; Lee, S.-H.; Jeong, B.-H.; Kim, H.-K. Synthesis and Evaluation of Multifunctional Fluorescent Inhibitors with Synergistic Interaction of PSMA and Hypoxia for Prostate Cancer. Bioconjugate Chemistry, 2019, 30(1), 90–100. doi: 10.1021/acs.bioconjchem.8b00767
  15. Liu, Y.; Wang, Z.; Li, X.; Ma, X.; Wang, S.; Kang, F.; Yang, W.; Ma, W.; Wang, J. Near-infrared Fluorescent Peptides with High Tumor Selectivity: Novel Probes for Image-Guided Surgical Resection of Orthotopic Glioma. Molecular Pharmaceutics, 2019, 16(1), 108–117. doi: 10.1021/acs.molpharmaceut.8b00888
  16. Jasinski, D.L.; Yin, H.; Li, Z.; Guo, P. The Hydrophobic Effect from Conjugated Chemicals or Drugs on in Vivo Biodistribution of RNA Nanoparticles. Human Gene Therapy, 2018, 29(1), 77–86. doi: 10.1089/hum.2017.054
  17. Park, S.; Shevlin, E.; Vedvyas, Y.; Zaman, M.; Park, S.; Hsu, Y.-M.S.; Min, I.M.; Jin, M.M. Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Scientific Reports, 2017, 7, 14366. doi: 10.1038/s41598-017-14749-3
  18. Zhang, C.; Zhao, X.; Guo, S.; Lin, T.; Guo, H. Highly effective photothermal chemotherapy with pH-responsive polymer-coated drug-loaded melanin-like nanoparticles. International Journal of Nanomedicine, 2017, 12, 1827–1840. doi: 10.2147/ijn.s130539
  19. Duan, X.; Li, H.; Zhou, J.; Zhou, Q.; Oldham, K.R.; Wang, T.D. Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope. Scientific Reports, 2016, 6, 37315. doi: 10.1038/srep37315
  20. Zhou, Q.; Li, Z.; Zhou, J.; Joshi, B.P.; Li, G.; Duan, X.; Kuick, R.; Owens, S.R.; Wang, T.D. In vivo photoacoustic tomography of EGFR overexpressed in hepatocellular carcinoma mouse xenograft. Photoacoustics, 2016, 4(2), 43–54. doi: 10.1016/j.pacs.2016.04.001
  21. Abolmaali, S.; Tamaddon, A.; Kamali-Sarvestani, E.; Ashraf, M.; Dinarvand, R. Stealth Nanogels of Histinylated Poly Ethyleneimine for Sustained Delivery of Methotrexate in Collagen-Induced Arthritis Model. Pharmaceutical Research, 2015, 32(10), 3309–3323. doi: 10.1007/s11095-015-1708-0

Sulfo-Cyanine5.5 amine

  1. Khatri, S.; Hansen, J.; Mendes, A.C.; Chronakis, I.S.; Hung, S.-C.; Mellins, E.D.; Astakhova, K. Citrullinated Peptide Epitope Targets Therapeutic Nanoparticles to Human Neutrophils. Bioconjugate Chemistry, 2019, 30(10), 2584–2593. doi: 10.1021/acs.bioconjchem.9b00518
  2. Malinovskaya, Y.; Melnikov, P.; Baklaushev, V.; Gabashvili, A.; Osipova, N.; Mantrov, S.; Ermolenko, Y.; Maksimenko, O.; Gorshkova, M.; Balabanyan, V.; Kreuter, J.; Gelperina, S. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. International Journal of Pharmaceutics, 2017, 524(1–2), 77–90. doi: 10.1016/j.ijpharm.2017.03.049

Sulfo-Cyanine5.5 azide

  1. Erel-Akbaba, G.; Carvalho, L.A.; Tian, T.; Zinter, M.; Akbaba, H.; Obeid, P.J.; Chiocca, E.A.; Weissleder, R.; Kantarci, A.G.; Tannous, B.A. Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. ACS Nano, 2019, 13(4), 4028–4040. doi: 10.1021/acsnano.8b08177
  2. Gu, W.; Bobrin, V.A.; Chen, S.-P.R.; Wang, Z.; Schoning, J.P.; Gu, Y.; Chen, W.; Chen, M.; Jia, Z.; Monteiro, M.J. Biodistribution of PNIPAM-Coated Nanostructures Synthesized by the TDMT Method. Biomacromolecules, 2019, 20(2), 625–634. doi: 10.1021/acs.biomac.8b01196

Sulfo-Cyanine5.5 carboxylic acid

  1. Matoori, S.; Mooney, D.J. Near-Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16(20), 2000369. doi: 10.1002/smll.202000369
  2. Rodríguez-Hakim, M.; Anand, S.; Tajuelo, J.; Yao, Z.; Kannan, A.; Fuller, G.G. Asphaltene-induced spontaneous emulsification: Effects of interfacial co-adsorption and viscoelasticity. Journal of Rheology, 2020, 64(4), 799–816. doi: 10.1122/1.5145307
  3. Wild, A.R.; Sinnen, B.L.; Dittmer, P.J.; Kennedy, M.J.; Sather, W.A.; Dell'Acqua, M.L. Synapse-to-Nucleus Communication through NFAT Is Mediated by L-type Ca2+ Channel Ca2+ Spike Propagation to the Soma. Cell Reports, 2019, 26, 3537–3550.e4. doi: 10.1016/j.celrep.2019.03.005

Sulfo-Cyanine5.5 maleimide

  1. Chen, Q.; Gao, M.; Li, Z.; Xiao, Y.; Bai, X.; Boakye-Yiadom, K.O.; Xu, X.; Zhang, X.-Q. Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy. Journal of Controlled Release, 2020, 323, 179–190. doi: 10.1016/j.jconrel.2020.03.044
  2. Wang, J.; Johnson, A.G.; Lapointe, C.P.; Choi, J.; Prabhakar, A.; Chen, D.-H.; Petrov, A.N.; Puglisi, J.D. eIF5B gates the transition from translation initiation to elongation. Nature, 2019, 573, 605–608. doi: 10.1038/s41586-019-1561-0

Sulfo-Cyanine7 NHS ester

  1. Trac, N.; Chen, L.-Y.; Zhang, A.; Liao, C.-P.; Poon, C.; Wang, J.; Ando, Y.; Joo, J.; Garri, C.; Shen, K.; Kani, K.; Gross, M.E.; Chung, E.J. CCR2-targeted micelles for anti-cancer peptide delivery and immune stimulation. Journal of Controlled Release, in press. doi: 10.1016/j.jconrel.2020.09.054
  2. Huayamares, S.G.; Song, J.Y.; Huang, A.; Crowl, S.R.; Groer, C.E.; Forrest, M.L.; Berkland, C.J. Constructing a Biomaterial to Simulate Extracellular Drug Transport in Solid Tumors. Macromolecular Bioscience, in press. doi: 10.1002/mabi.202000251
  3. Furubayashi, T.; Ishida, K.; Nakata, E.; Morii, T.; Naruse, K.; Matsushita, M.; Fujiyoshi, S. Cryogenic Far-Field Fluorescence Nanoscopy: Evaluation with DNA Origami. Journal of Physical Chemistry B, 2020, 124(35), 7525–7536. doi: 10.1021/acs.jpcb.0c04721
  4. Lix, K.; Krause, K.D.; Kim, H.; Algar, W.R. Investigation of the Energy Transfer Mechanism Between Semiconducting Polymer Dots and Organic Dyes. Journal of Physical Chemistry C, 2020, 124(31), 17387–17400. doi: 10.1021/acs.jpcc.0c04983
  5. Yoshikawa, T.; Quoc Phan, K.; Tagawa, H.; Sasaki, K.; Feng, H.; Kishimura, A.; Mori, T.; Katayama, Y. Modification of nitric oxide donors onto a monoclonal antibody boosts accumulation in solid tumors. International Journal of Pharmaceutics, 2020, 583, 119352. doi: 10.1016/j.ijpharm.2020.119352
  6. Zahn, T.; Akhras, S.; Spengler, C.; Murra, R.O.; Holzhauser, T.; Hildt, E. A new approach for therapeutic vaccination against chronic HBV infections. Vaccine, 2020, 38(15), 3105–3120. doi: 10.1016/j.vaccine.2020.02.063
  7. Song, L.; Chen, Y.; Ding, J.; Wu, H.; Zhang, W.; Ma, M.; Zang, F.; Wang, Z.; Gu, N.; Zhang, Y. Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma. Journal of Materials Chemistry B, 2020, 8(5), 895&ndasH,907. doi: 10.1039/C9TB02521A
  8. Anani, T.; Brannen, A.; Panizzi, P.; Duin, E.C.; David, A.E. Quantitative, real-time in vivo tracking of magnetic nanoparticles using multispectral optoacoustic tomography (MSOT) imaging. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112951. doi: 10.1016/j.jpba.2019.112951
  9. Katsumata, K.; Ishihara, J.; Fukunaga, K.; Ishihara, A.; Yuba, E.; Budina, E.; Hubbell, J.A. Conferring extracellular matrix affinity enhances local therapeutic efficacy of anti-TNF-α antibody in a murine model of rheumatoid arthritis. Arthritis Research & Therapy, 2019, 21, 298. doi: 10.1186/s13075-019-2075-8
  10. Katsumata, K.; Ishihara, J.; Mansurov, A.; Ishihara, A.; Raczy, M.M.; Yuba, E.; Hubbell, J.A. Targeting inflammatory sites through collagen affinity enhances the therapeutic efficacy of anti-inflammatory antibodies. Science Advances, 2019, 5(11), eaay1971. doi: 10.1126/sciadv.aay1971
  11. Mazur, C.; Powers, B.; Zasadny, K.; Sullivan, J.M.; Dimant, H.; Kamme, F.; Hesterman, J.; Matson, J.; Oestergaard, M.; Seaman, M.; Holt, R.W.; Qutaish, M.; Polyak, I.; Coelho, R.; Gottumukkala, V.; Gaut, C.M.; Berridge, M.; Albargothy, N.J.; Kelly, L.; Carare, R.O.; Hoppin, J.; Kordasiewicz, H.; Swayze, E.E.; Verma, A. Brain pharmacology of intrathecal antisense oligonucleotides revealed through multimodal imaging. JCI Insight, 2019, 4(20), 129240. doi: 10.1172/jci.insight.129240
  12. Bykov, Y.; Cohen, N.; Gabrielli, N.; Manenschijn, H.; Welsch, S.; Chlanda, P.; Kukulski, W.; Patil, K.R.R.; Schuldiner, M.; Briggs, J.A.G. High-throughput ultrastructure screening using electron microscopy and fluorescent barcoding. Journal of Cell Biology, 2019, 218(8), 2797–2811. doi: 10.1083/jcb.201812081
  13. Wang, H.-N.; Register, J.K.; Fales, A.M.; Gandra, N.; Strobbia, P.; Cho, E.H.; Boico, A.; Palmer, G.M.; Klitzman, B.; Vo-Dinh, T. Implantable "smart tattoo" SERS nanosensors for in vivo detection of nucleic acid biotargets in a large animal model. Plasmonics in Biology and Medicine XVI (Proceedings SPIE 10894), 2019, 108941J. doi: 10.1117/12.2514634
  14. Chan, P.S.; Xian, J.W.; Li, Q.; Chan, C.W.; Leung, S.S.Y.; To, K.K.W. Biodegradable Thermosensitive PLGA-PEG-PLGA Polymer for Non-irritating and Sustained Ophthalmic Drug Delivery. AAPS Journal, 2019, 21, 59. doi: 10.1208/s12248-019-0326-x
  15. Song, J.Y.; Larson, N.R.; Thati, S.; Torres-Vazquez, I.; Martinez-Rivera, N.; Subelzu-Aispuru, N.J.; Leon, M.A.; Rosa-Molinar, E.; Schöneich, C.; Middaugh, C.R.; Berkland, C.J. Glatiramer acetate persists at the injection site and draining lymph nodes via electrostatically-induced aggregation. Journal of Controlled Release, 2019, 293, 36–47. doi: 10.1016/j.jconrel.2018.11.007
  16. Ishihara, J.; Ishihara, A.; Potin, L.; Hosseinchi, P.; Fukunaga, K.; Damo, M.; Gajewski, T.F.; Swartz, M.A.; Hubbell, J.A. Improving Efficacy and Safety of Agonistic Anti-CD40 Antibody Through Extracellular Matrix Affinity. Molecular Cancer Therapeutics, 2018, 17(11), 2399–2411. doi: 10.1158/1535-7163.MCT-18-0091
  17. Henderson, L.; Neumann, O.; Kaffes, C.; Zhang, R.; Marangoni, V.; Ravoori, M.K.; Kundra, V.; Bankson, J.; Nordlander, P.; Halas, N.J. Routes to Potentially Safer T1 Magnetic Resonance Imaging Contrast in a Compact Plasmonic Nanoparticle with Enhanced Fluorescence. ACS Nano, 2018, 12(8), 8214–8223. doi: 10.1021/acsnano.8b03368
  18. Bhatnagar, S.; Verma, K.D.; Hu, Y.; Khera, E.; Priluck, A.; Smith, D.E.; Thurber, G.M. Oral Administration and Detection of a Near-Infrared Molecular Imaging Agent in an Orthotopic Mouse Model for Breast Cancer Screening. Molecular Pharmaceutics, 2018, 15(5), 1746–1754. doi: 10.1021/acs.molpharmaceut.7b00994
  19. Gaspar, I.; Hövelmann, F.; Chamiolo, J.; Ephrussi, A.; Seitz, O. Quantitative mRNA Imaging with Dual Channel qFIT Probes to Monitor Distribution and Degree of Hybridization. ACS Chemical Biology, 2018, 13(3), 742–749. doi: 10.1021/acschembio.7b01007
  20. Liu, Z.; Wang, S.; Li, W.; Tian, Y. Bioimaging and Biosensing of Ferrous Ion in Neurons and HepG2 Cells Upon Oxidative Stress. Analytical Chemistry, 2018, 90(4), 2816–2825. doi: 10.1021/acs.analchem.7b04934
  21. Das, S.; Haedicke, K.; Grimm, J. Cerenkov-activated sticky tag for in vivo fluorescence imaging. Journal of Nuclear Medicine, 2018, 59(1), 58–65. doi: 10.2967/jnumed.117.198549
  22. Timin, A.S.; Muslimov, A.R.; Lepik, K.V.; Epifanovskaya, O.S:; Shakirova, A.I.; Mock, U.; Riecken, K.; Okilova, M.V.; Sergeev, V.S.; Afanasyev, B.V.; Fehse, B.; Sukhorukov, G.B. Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14(1), 97–108. doi: 10.1016/j.nano.2017.09.001
  23. Huang, Y.; Zhou, J.; Hakamivala, A.; Wu, J.; Hong, Y.; Borrelli, J.; Tang, L. An optical probe for detecting chondrocyte apoptosis in response to mechanical injury. Scientific Reports, 2017, 7, 10906. doi: 10.1038/s41598-017-10653-y
  24. Nakhaei, E.; Kim, C.W.; Funamoto, D.; Sato, H.; Nakamura, Y.; Kishimura, A.; Mori, T.; Katayama, Y. Design of a ligand for cancer imaging with long blood circulation and an enhanced accumulation ability in tumors. MedChemComm, 2017, 8(6), 1190–1195. doi: 10.1039/c7md00102a
  25. Iyisan, B.; Kluge, J.; Formanek, P.; Voit, B.; Appelhans, D. Multifunctional and Dual-Responsive Polymersomes as Robust Nanocontainers: Design, Formation by Sequential Post-Conjugations, and pH-Controlled Drug Release. Chemistry of Materials, 2016, 28(5), 1513–1525. doi: 10.1021/acs.chemmater.5b05016
  26. Saita, M.; Kaneko, J.; Sato, T.; Takahashi, S.; Takahashi, S.W.; Kawamata, R.; Sakurai, T.; Lee, M.-C.; Hamada, N.; Kimoto, K.; Nagasaki, Y. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption. Biomaterials, 2016, 76, 292–301. doi: 10.1016/j.biomaterials.2015.10.077
  27. Subedi, M.; Minn, I.; Chen, J.; Kim, Y.; Ok, K.; Jung, Y.W.; Pomper, M.G.; Byun, Y. Design, synthesis and biological evaluation of PSMA/hepsin-targeted heterobivalent ligands. European Journal of Medicinal Chemistry, 2016, 118, 208–218. doi: 10.1016/j.ejmech.2016.04.033
  28. Cilliers, C.; Liao, J.; Atangcho, L.; Thurber, G.M. Residualization Rates of Near-Infrared Dyes for the Rational Design of Molecular Imaging Agents. Molecular Imaging and Biology, 2015, 17(6), 757–762. doi: 10.1007/s11307-015-0851-7
  29. Terekhov, S., Smirnov, I.; Bobik, T.; Shamborant, O.; Zenkova, M.; Chernolovskaya, E.; Gladkikh, D.; Murashev, A.; Dyachenko, I.; Palikov, V.; Palikova, Y.; Knorre, V.; Belogurov Jr, A.; Ponomarenko, N.; Blackburn, G.M.; Masson, P.; Gabibov, A. A novel expression cassette delivers efficient production of exclusively tetrameric human butyrylcholinesterase with improved pharmacokinetics for protection against organophosphate poisoning. Biochimie, 2015, 118, 51–59. doi: 10.1016/j.biochi.2015.07.028
  30. Mahoney, D.; Owens, E.A.; Fan, C.; Hsiang, J.-C.; Henary, M.; Dickson, R.M. Tailoring Cyanine Dark States for Improved Optically Modulated Fluorescence Recovery. The Journal of Physical Chemistry B, 2015, 119(13), 4637–4643. doi: 10.1021/acs.jpcb.5b00777
  31. Zhang, X.-N.; Zhang, C.-G.; Zhu, Q.-L.; Zhou, Y.; Liu, Y.; Chen, W.-L.; Yang, S.-D. Zhou, X.-F. Zhu, A.-J.; Zhang, X.-N.; Jin, Y. N-Succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. International Journal of Nanomedicine, 2014, 9, 2919–2932. doi: 10.2147/ijn.s59799
  32. Terekhov, S.S.; Smirnov, I.V.; Shamborant, O.G.; Zenkova, M.A.; Chernolovskaya, E.L.; Gladkikh, D.V.; Murashev, A.N.; Dyachenko, I.A.; Knorre, V.D.; Belogurov, A.A.; Ponomarenko, N.A.; Deyev, S.M.; Vlasov, V.V.; Gabibov, A.G. Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo. Acta Naturae, 2014, 6(4), 54–59
  33. Ayala-Orozco, C.; Liu, J.G.; Knight, M.W.; Wang, Y.; Day, J.K.; Nordlander, P.; Halas, N.J. Fluorescence Enhancement of Molecules Inside a Gold Nanomatryoshka. Nano Letters, 2014, 14(5), 2926-2933. doi: 10.1021/nl501027j

Sulfo-Cyanine7 amine

  1. Kim, H.; Han, J.; Park, J.-H. Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity. Journal of Controlled Release, 2020, 319, 77–86. doi: 10.1016/j.jconrel.2019.12.021
  2. Rippe, M.; Stefanello, T.F.; Kaplum, V.; Britta, E.A.; Garcia, F.P.; Poirot, R.; Companhoni, M.V.P.; Nakamura, C.V.; Szarpak-Jankowska, A.; Auzély-Velty, R. Heparosan as a potential alternative to hyaluronic acid for the design of biopolymer-based nanovectors for anticancer therapy. Biomaterials Science, 2019, 7, 2850–2860. doi: 10.1039/c9bm00443b
  3. Guo, X.; Zou, C.-L.; Jung, H.; Gong, Z.; Bruch, A.; Jiang, L.; Tang, H.X. Efficient Generation of a Near-visible Frequency Comb via Cherenkov-like Radiation from a Kerr Microcomb. Physical Review Applied, 2018, 10(1), 014012. doi: 10.1103/PhysRevApplied.10.014012
  4. Tabe, H.; Sukenobe, K.; Kondo, T.; Sakurai, A.; Maruo, M.; Shimauchi, A.; Hirano, M.; Uno, S.-N.; Kamiya, M.; Urano, Y.; Matsushita, M.; Fujiyoshi, S. Cryogenic Fluorescence Localization Microscopy of Spectrally Selected Individual FRET Pairs in a Water Matrix. The Journal of Physical Chemistry B, 2018, 122(27), 6906–6911. doi: 10.1021/acs.jpcb.8b03977
  5. Miragoli, M.; Ceriotti, P.; Iafisco, M.; Vacchiano, M.; Salvarani, N.; Alogna, A.; Carullo, P.; Ramirez-Rodríguez, G.B.; Patrício, T.; Esposti, L.D.; Rossi, F.; Ravanetti, F.; Pinelli, S.; Alinovi, R.; Erreni, M.; Rossi, S.; Condorelli, G.; Post, H.; Tampieri, A.; Catalucci, D. Inhalation of peptide-loaded nanoparticles improves heart failure. Science Translational Medicine, 2018, 10(424), eaan6205. doi: 10.1126/scitranslmed.aan6205
  6. Park, H.-K.; Lee, S.J.; Oh, J.-S.; Lee, S.-G.; Jeong, Y.-I.; Lee, H.C. Smart Nanoparticles Based on Hyaluronic Acid for Redox-Responsive and CD44 Receptor-Mediated Targeting of Tumor. Nanoscale Research Letters, 2015, 10(1), 981. doi: 10.1186/s11671-015-0981-5

Sulfo-Cyanine7 carboxylic acid

  1. Matoori, S.; Mooney, D.J. Near-Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16(20), 2000369. doi: 10.1002/smll.202000369
  2. Pfister, J.; Summer, D.; Petrik, M.; Khoylou, M.; Lichius, A.; Kaeopookum, P.; Kochinke, L.; Orasch, T.; Haas, H.; Decristoforo, C. Hybrid Imaging of Aspergillus fumigatus Pulmonary Infection with Fluorescent, 68Ga-Labelled Siderophores. Biomolecules, 2020, 10, 168. doi: 10.3390/biom10020168
  3. Luthman, A.S. Wide-Field fHSI with a Linescan SRDA. In: Spectrally Resolved Detector Arrays for Multiplexed Biomedical Fluorescence Imaging (Springer Thesis), 2018, 51–85. doi: 10.1007/978-3-319-98255-7_3
  4. Luthman, A.S.; Dumitru, S.; Quiros-Gonzalez, I.; Joseph, J.; Bohndiek, S.E. Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. Journal of Biophotonics, 2017, 10(6–7), 840–853. doi: 10.1002/jbio.201600304

Sulfo-Cyanine7.5 NHS ester

  1. Park, B.G.; Kim, Y.J.; Min, J.H.; Cheong, T.-C.; Nam, S.H.; Cho, N.-H.; Kim, Y.K.; Lee, K.B. Assessment of Cellular Uptake Efficiency According to Multiple Inhibitors of Fe3O4-Au Core-Shell Nanoparticles: Possibility to Control Specific Endocytosis in Colorectal Cancer Cells. Nanoscale Research Letters, 2020, 15, 165. doi: 10.1186/s11671-020-03395-w
  2. Ju, Y.; Guo, H.; Yarber, F.; Edman, M.C.; Peddi, S.; Janga, S.R.; MacKay, J.A.; Hamm-Alvarez, S.F. Molecular Targeting of Immunosuppressants Using a Bi-functional Elastin-Like Polypeptide. Bioconjugate Chemistry, 2019, 30(9), 2358–2372. doi: 10.1021/acs.bioconjchem.9b00462
  3. Ruiz, A.; Bravo, D.; Duarte, A.; Adler, R.S.; Raya, J.G. Accuracy of Ultrasound-Guided versus Landmark-Guided Intra-articular Injection for Rat Knee Joints. Ultrasound in Medicine and Biology, 2019, 45(10), 2787–2796. doi: 10.1016/j.ultrasmedbio.2019.06.403

Sulfo-Cyanine7.5 carboxylic acid

  1. Matoori, S.; Mooney, D.J. Near-Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16(20), 2000369. doi: 10.1002/smll.202000369
  2. Shi, F.; Li, M.; Wu, S.; Yang, F.; Di, W.; Pan, M.; Zhao, F.; Luo, S.; Gu, N.; Dou, J. Enhancing the Anti-Multiple Myeloma Efficiency in a Cancer Stem Cell Xenograft Model by Conjugating the ABCG2 Antibody with Microbubbles for a Targeted Delivery of Ultrasound Mediated Epirubicin. Biochemical Pharmacology, 2017, 132, 18–28. doi: 10.1016/j.bcp.2017.02.014

TAMRA alkyne, 5-isomer

  1. Rojas-Sánchez, L.; Sokolova, V.; Riebe, S.; Voskuhl, J.; Epple, M. Covalent Surface Functionalization of Calcium Phosphate Nanoparticles with Fluorescent Dyes by Copper-Catalysed and by Strain-Promoted Azide-Alkyne Click Chemistry. ChemNanoMat, 2019, 5(4), 436–446. doi: 10.1002/cnma.201800509

TAMRA alkyne, 6-isomer

  1. Rink, W.M.; Thomas, F. Decoration of Coiled-Coil Peptides with N-Cysteine Peptide Thioesters As Cyclic Peptide Precursors Using Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) Click Reaction. Organic Letters, 2018, 20(23), 7493–7497. doi: 10.1021/acs.orglett.8b03261

TAMRA azide, 5-isomer

  1. Seneviratne, U.; Huang, Z.; Am Ende, C.W.; Butler, T.W.; Cleary, L.; Dresselhaus, E.; Evrard, E.; Fisher, E.L.; Green, M.E.; Helal, C.J.; Humphrey, J.M.; Lanyon, L.F.; Marconi, M.; Mukherjee, P.; Sciabola, S.; Steppan, C.M.; Sylvain, E.K.; Tuttle, J.B.; Verhoest, P.R.; Wager, T.T.; Xie, L.; Ramaswamy, G.; Johnson, D.S.; Pettersson, M. Photoaffinity Labeling and Quantitative Chemical Proteomics Identify LXRβ as the Functional Target of Enhancers of Astrocytic apoE. Cell Chemical Biology, in press. doi: 10.1016/j.chembiol.2020.09.002
  2. Zhang, M.; Zhou, L.; Xu, Y.; Yang, M.; Xu, Y.; Komaniecki, G.P.; Kosciuk, T.; Chen, X.; Lu, X.; Zou, X.; Linder, M.E.; Lin, H. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis. Nature, 2020, 586(7829), 434–439. doi: 10.1038/s41586-020-2799-2
  3. Chen, X.; Xu, J.; Wong, N.-K.; Zhong, S.; Yang, M.; Liu, Z.; Lu, Y.; Li, W.; Zhou, Y. Chemoproteomic profiling of cobalamin-independent methionine synthases in plant with a covalent probe. Journal of Agricultural and Food Chemistry, 2020, 68(30), 8050–8056. doi: 10.1021/acs.jafc.0c03301
  4. Tan, M.S.Y.; Davison, D.; Sanchez, M.I.; Anderson, B.M.; Howell, S.; Snijders, A.; Edgington-Mitchell, L.E.; Deu, E. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases. PLoS One, 2020, 15(1), e0227341. doi: 10.1371/journal.pone.0227341
  5. Xu, Y.; Deng, Z.; Shi, Y.; Chen, X.; Xu, J.; Zhong, S.; Xiao, Y.; Wong, N.-K.; Zhou, Y. Molecular Imaging and In Situ Quantitative Profiling of Fatty Acid Synthase with a Chemical Probe. Analytical Chemistry, 2020, 92(6), 4419–4426. doi: 10.1021/acs.analchem.9b05327
  6. Kosciuk, T.; Price, I.R.; Zhang, X.; Zhu, C.; Johnson, K.N.; Zhang, S.; Halaby, S.L.; Komaniecki, G.P.; Yang, M.; DeHart, C.J.; Thomas, P.M.; Kelleher, N.L.; Fromme, J.C.; Lin, H. NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle. Nature Communications, 2020, 11, 1067. doi: 10.1038/s41467-020-14893-x
  7. Huang, C.-Y.; Yagüe-Capilla, M.; González-Pacanowska, D.; Chang, Z.-F. Quantitation of deoxynucleoside triphosphates by click reactions. Scientific Reports, 2020, 10, 611. doi: 10.1038/s41598-020-57463-3
  8. Zhang, S.; Spiegelman, N.A.; Lin, H. Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling. Methods in Molecular Biology, 2019, 2009, 137–147. doi: 10.1007/978-1-4939-9532-5_11
  9. Tang, G.; Liu, L.; Wang, X.; Pan, Z. Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as selective covalent irreversible inhibitors of interleukin-2-inducible T-cell kinase (Itk). European Journal of Medicinal Chemistry, 2019, 173, 167–183. doi: 10.1016/j.ejmech.2019.03.055
  10. Eelen, G.; Dubois, C.; Cantelmo, A.R.; Goveia, J.; Brüning, U.; DeRan, M.; Jarugumilli, G.; van Rijssel, J.; Saladino, G.; Comitani, F.; Zecchin, A.; Rocha, S.; Chen, R.; Huang, H.; Vandekeere, S.; Kalucka, J.; Lange, C.; Morales-Rodriguez, F.; Cruys, B.; Treps, L.; Ramer, L.; Vinckier, S.; Brepoels, K.; Wyns, S.; Souffreau, J.; Schoonjans, L.; Lamers, W.H.; Wu, Y.; Haustraete, J.; Hofkens, J.; Liekens, S.; Cubbon, R.; Ghesquière, B.; Dewerchin, M.; Gervasio, F.L.; Li, X.; van Buul, J.D.; Wu, X.; Carmeliet, P. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature, 2018, 561(7721), 63–69. doi: 10.1038/s41586-018-0466-7
  11. Spangler, B.; Dovala, D.; Sawyer, W.S.; Thompson, K.V.; Six, D.A.; Reck, F.; Feng, B.Y. Molecular probes for the determination of sub-cellular compound exposure profiles in Gram-negative bacteria. ACS Infectious Diseases, 2018, 4(9), 1355–1367. doi: 10.1021/acsinfecdis.8b00093
  12. Moynihan, K.D.; Holden, R.L.; Mehta, N.K.; Wang, C.; Karver, M.R.; Dinter, J.; Liang, S.; Abraham, W.; Melo, M.B.; Zhang, A.Q.; Li, N.; Le Gall, S.; Pentelute, B.; Irvine, D.J. Enhancement of peptide vaccine immunogenicity by increasing lymphatic drainage and boosting serum stability. Cancer Immunology Research, 2018, 6(9), 1025–1038. doi: 10.1158/2326-6066.CIR-17-0607
  13. Li, W.; Zhou, Y.; Tang, G.; Wong, N.-K.; Yang, M.; Tan, D.; Xiao, Y. Chemoproteomics Reveals the Anti-proliferative Potential of Parkinson's Disease Kinase Inhibitor LRRK2-IN-1 by Targeting PCNA Protein. Molecular Pharmaceutics, 2018, 15(8), 3252–3259. doi: 10.1021/acs.molpharmaceut.8b00325
  14. Nemmara, V.J.; Subramanian, V.; Muth, A.; Mondal, S.; Salinger, A.J.; Maurais, A.J.; Tilvawala, R.; Weerapana, E.; Thompson, P.R. The Development of Benzimidazole-Based Clickable Probes for the Efficient Labeling of Cellular Protein Arginine Deiminases (PADs). ACS Chemical Biology, 2018, 13(3), 712–722. doi: 10.1021/acschembio.7b00957
  15. Niessen, S.; Dix, M.M.; Barbas, S.; Potter, Z.E.; Lu, S.; Brodsky, O.; Planken, S.; Behenna, D.; Almaden, C.; Gajiwala, K.S.; Ryan, K.; Ferre, R.; Lazear, M.R.; Hayward, M.M.; Kath, J.C.; Cravatt, B.F. Proteome-wide Map of Targets of T790M-EGFR-Directed Covalent Inhibitors. Cell Chemical Biology, 2017, 24(11), 1388–1400.e7. doi: 10.1016/j.chembiol.2017.08.017
  16. Schonhoft, J.D.; Monteiro, C.; Plate, L.; Eisele, Y.S.; Kelly, J.M.; Boland, D.; Parker, C.G.; Cravatt, B.F.; Teruya, S.; Helmke, S.; Maurer, M.; Berk, J.; Sekijima, Y.; Novais, M.; Coelho, T.; Powers, E.T.; Kelly, J.W. Peptide probes detect misfolded transthyretin oligomers in plasma of hereditary amyloidosis patients. Science Translational Medicine, 2017, 9(407), eaam7621. doi: 10.1126/scitranslmed.aam7621
  17. Planken, S.; Behenna, D.C.; Nair, S.K.; Johnson, T.O.; Nagata, A.; Almaden, C.; Bailey, S.; Ballard, T.E.; Bernier, L.; Cheng, H. et al. Discovery of N-((3R, 4R)-4-fluoro-1-(6-((3-methoxy-1-methyl-1H-pyrazol-4-yl) amino)-9-methyl-9H-purin-2-yl) pyrrolidine-3-yl) acrylamide (PF-06747775) Through Structure-Based Drug Design; ... Journal of Medicinal Chemistry, 2017, 60(7), 3002–3019. doi: 10.1021/acs.jmedchem.6b01894
  18. Zhou, Y.; Li, W.; Wang, M.; Zhang, X.; Zhang, H.; Tong, X.; Xiao, Y. Competitive profiling of celastrol targets in human cervical cancer HeLa cells via quantitative chemical proteomics. Molecular BioSystems, 2017, 13(1), 83–91. doi: 10.1039/c6mb00691d
  19. Butler, C.R.; Beck, E.M.; Harris, A.R.; Huang, Z.; McAllister, L.A.; Am Ende, C.W.; Fennell, K.F.; Foley, T.L.; Fonseca, K.R.; Hawrylik, S.J.; Johnson, D.S.; Knafels, J.D.; Mente, S.; Noell, S.; Pandit, J.; Phillips, T.B.; Piro, J.R.; Rogers, B.N.; Samad, T.A.; Wang, J.; Wan, S.; Brodney, M.A. Azetidine and Piperidine Carbamates as Efficient, Covalent Inhibitors of Monoacylglycerol Lipase. Journal of Medicinal Chemistry, 2017, 60(23), 9860–9873. doi: 10.1021/acs.jmedchem.7b01531
  20. Zuhl, A.M.; Nolan, C.E.; Brodney, M.A.; Niessen, S.; Atchison, K.; Houle, C.; Karanian, D.A.; Ambroise, Cl.; Brulet, J.W.; Beck, E.M.; Doran, S.D.; O'Neill, B.T.; am Ende, C.W.; Chang, C.; Geoghegan, K.F.; West, G.M.; Judkins, J.C.; Hou, X.; Riddell, D.R.; Johnson, D.S. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of β-secretase inhibitors. Nature communications, 2016, 7, 13042. doi: 10.1038/ncomms13042
  21. Rana, S.; Blowers, E.C.; Tebbe, C.; Contreras, J.I.; Radhakrishnan, P.; Kizhake, S.; Zhou, T.; Rajule, R.N.; Arnst, J.L.; Munkarah, A.R.; Rattan, R.; Natarajan, A. Isatin Derived Spirocyclic Analogues with α-Methylene-γ-butyrolactone as Anticancer Agents: A Structure-Activity Relationship Study. Journal of Medicinal Chemistry, 2016, 59(10), 5121–5127. doi: 10.1021/acs.jmedchem.6b00400
  22. Zhou, Y.; Li, W.; Xiao, Y. Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome. ACS Chemical Biology, 2016, 11(4), 882–888. doi: 10.1021/acschembio.5b01043
  23. Nusshold, C.; Üllen, A.; Kogelnik, N.; Bernhart, E.; Reicher, H.; Plastira, I.; Glasnov, T.; Zangger, K.; Rechberger, G.; Kollroser, M.; Fauler, G.; Wolinski, H.; Weksler, B.B.; Romero, I.A.; Kohlwein, S.D.; Couraud, P.-O.; Malle, E.; Sattler, W. Assessment of electrophile damage in a human brain endothelial cell line utilizing a clickable alkyne analogue of 2-chlorohexadecanal. Free Radical Biology and Medicine, 2016, 90, 59–74. doi: 10.1016/j.freeradbiomed.2015.11.010
  24. Li, W.; Zhou, Y.; Tang, G.; Xiao, Y. Characterization of the Artemisinin Binding Site for Translationally Controlled Tumor Protein (TCTP) by Bioorthogonal Click Chemistry. Bioconjugate Chemistry, 2016, 27(12), 2828–2833. doi: 10.1021/acs.bioconjchem.6b00556
  25. Mahmoodi, M.M.; Rashidian, M.; Zhang, Y.; Distefano, M.D. Application of meta- and para- Phenylenediamine as Enhanced Oxime Ligation Catalysts for Protein Labeling, PEGylation, Immobilization, and Release. Current Protocols in Protein Science, 2015, 79, 15.4.1–15.4.28. doi: 10.1002/0471140864.ps1504s79
  26. Jia, L.; Chisari, M.; Maktabi, M.H.; Sobieski, C.; Zhou, H.; Konopko, A.M.; Martin, B.R.; Mennerick, S.J.; Blumer, K.J. A Mechanism Regulating G Protein-coupled Receptor Signaling That Requires Cycles of Protein Palmitoylation and Depalmitoylation. Journal of Biological Chemistry, 2014, 289(9), 6249–6257. doi: 10.1074/jbc.m113.531475
  27. Zhou, Y.; Guo, T.; Li, X.; Dong, Y.; Galatsis, P.; Johnson, D.S.; Pan, Z. Discovery of selective 2,4-diaminopyrimidine-based photoaffinity probes for glyoxalase I. Medicinal Chemistry Communications, 2014, 5(3), 352–357. doi: 10.1039/c3md00286a
  28. Zhou, Y.; Guo, T.; Tang, G.; Wu, H.; Wong, N.-K.; Pan, Z. Site-Selective Protein Immobilization by Covalent Modification of GST Fusion Proteins. Bioconjugate Chemistry, 2014, 25(11), 1911-1915. doi: 10.1021/bc500347b

TAMRA azide, 6-isomer

  1. Chen, X.; Xu, J.; Wong, N.-K.; Zhong, S.; Yang, M.; Liu, Z.; Lu, Y.; Li, W.; Zhou, Y. Chemoproteomic profiling of cobalamin-independent methionine synthases in plant with a covalent probe. Journal of Agricultural and Food Chemistry, 2020, 68(30), 8050–8056. doi: 10.1021/acs.jafc.0c03301
  2. Xu, Y.; Deng, Z.; Shi, Y.; Chen, X.; Xu, J.; Zhong, S.; Xiao, Y.; Wong, N.-K.; Zhou, Y. Molecular Imaging and In Situ Quantitative Profiling of Fatty Acid Synthase with a Chemical Probe. Analytical Chemistry, 2020, 92(6), 4419–4426. doi: 10.1021/acs.analchem.9b05327
  3. Zhang, S.; Spiegelman, N.A.; Lin, H. Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling. Methods in Molecular Biology, 2019, 2009, 137–147. doi: 10.1007/978-1-4939-9532-5_11
  4. Tang, G.; Liu, L.; Wang, X.; Pan, Z. Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as selective covalent irreversible inhibitors of interleukin-2-inducible T-cell kinase (Itk). European Journal of Medicinal Chemistry, 2019, 173, 167–183. doi: 10.1016/j.ejmech.2019.03.055
  5. Eelen, G.; Dubois, C.; Cantelmo, A.R.; Goveia, J.; Brüning, U.; DeRan, M.; Jarugumilli, G.; van Rijssel, J.; Saladino, G.; Comitani, F.; Zecchin, A.; Rocha, S.; Chen, R.; Huang, H.; Vandekeere, S.; Kalucka, J.; Lange, C.; Morales-Rodriguez, F.; Cruys, B.; Treps, L.; Ramer, L.; Vinckier, S.; Brepoels, K.; Wyns, S.; Souffreau, J.; Schoonjans, L.; Lamers, W.H.; Wu, Y.; Haustraete, J.; Hofkens, J.; Liekens, S.; Cubbon, R.; Ghesquière, B.; Dewerchin, M.; Gervasio, F.L.; Li, X.; van Buul, J.D.; Wu, X.; Carmeliet, P. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature, 2018, 561(7721), 63–69. doi: 10.1038/s41586-018-0466-7
  6. Li, W.; Zhou, Y.; Tang, G.; Wong, N.-K.; Yang, M.; Tan, D.; Xiao, Y. Chemoproteomics Reveals the Anti-proliferative Potential of Parkinson's Disease Kinase Inhibitor LRRK2-IN-1 by Targeting PCNA Protein. Molecular Pharmaceutics, 2018, 15(8), 3252–3259. doi: 10.1021/acs.molpharmaceut.8b00325
  7. Nemmara, V.J.; Subramanian, V.; Muth, A.; Mondal, S.; Salinger, A.J.; Maurais, A.J.; Tilvawala, R.; Weerapana, E.; Thompson, P.R. The Development of Benzimidazole-Based Clickable Probes for the Efficient Labeling of Cellular Protein Arginine Deiminases (PADs). ACS Chemical Biology, 2018, 13(3), 712–722. doi: 10.1021/acschembio.7b00957
  8. Zhou, Y.; Li, W.; Wang, M.; Zhang, X.; Zhang, H.; Tong, X.; Xiao, Y. Competitive profiling of celastrol targets in human cervical cancer HeLa cells via quantitative chemical proteomics. Molecular BioSystems, 2017, 13(1), 83–91. doi: 10.1039/c6mb00691d
  9. Butler, C.R.; Beck, E.M.; Harris, A.R.; Huang, Z.; McAllister, L.A.; Am Ende, C.W.; Fennell, K.F.; Foley, T.L.; Fonseca, K.R.; Hawrylik, S.J.; Johnson, D.S.; Knafels, J.D.; Mente, S.; Noell, S.; Pandit, J.; Phillips, T.B.; Piro, J.R.; Rogers, B.N.; Samad, T.A.; Wang, J.; Wan, S.; Brodney, M.A. Azetidine and Piperidine Carbamates as Efficient, Covalent Inhibitors of Monoacylglycerol Lipase. Journal of Medicinal Chemistry, 2017, 60(23), 9860–9873. doi: 10.1021/acs.jmedchem.7b01531
  10. Zuhl, A.M.; Nolan, C.E.; Brodney, M.A.; Niessen, S.; Atchison, K.; Houle, C.; Karanian, D.A.; Ambroise, Cl.; Brulet, J.W.; Beck, E.M.; Doran, S.D.; O'Neill, B.T.; am Ende, C.W.; Chang, C.; Geoghegan, K.F.; West, G.M.; Judkins, J.C.; Hou, X.; Riddell, D.R.; Johnson, D.S. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of β-secretase inhibitors. Nature communications, 2016, 7, 13042. doi: 10.1038/ncomms13042
  11. Zhou, Y.; Li, W.; Xiao, Y. Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome. ACS Chemical Biology, 2016, 11(4), 882–888. doi: 10.1021/acschembio.5b01043
  12. Li, W.; Zhou, Y.; Tang, G.; Xiao, Y. Characterization of the Artemisinin Binding Site for Translationally Controlled Tumor Protein (TCTP) by Bioorthogonal Click Chemistry. Bioconjugate Chemistry, 2016, 27(12), 2828–2833. doi: 10.1021/acs.bioconjchem.6b00556
  13. Mahmoodi, M.M.; Rashidian, M.; Zhang, Y.; Distefano, M.D. Application of meta- and para- Phenylenediamine as Enhanced Oxime Ligation Catalysts for Protein Labeling, PEGylation, Immobilization, and Release. Current Protocols in Protein Science, 2015, 79, 15.4.1–15.4.28. doi: 10.1002/0471140864.ps1504s79
  14. Jia, L.; Chisari, M.; Maktabi, M.H.; Sobieski, C.; Zhou, H.; Konopko, A.M.; Martin, B.R.; Mennerick, S.J.; Blumer, K.J. A Mechanism Regulating G Protein-coupled Receptor Signaling That Requires Cycles of Protein Palmitoylation and Depalmitoylation. Journal of Biological Chemistry, 2014, 289(9), 6249–6257. doi: 10.1074/jbc.m113.531475
  15. Zhou, Y.; Guo, T.; Li, X.; Dong, Y.; Galatsis, P.; Johnson, D.S.; Pan, Z. Discovery of selective 2,4-diaminopyrimidine-based photoaffinity probes for glyoxalase I. Medicinal Chemistry Communications, 2014, 5(3), 352–357. doi: 10.1039/c3md00286a

TAMRA maleimide, 6-isomer

  1. Ast, J.; Arvaniti, A.; Fine, N.H.F.; Nasteska, D.; Ashford, F.B.; Stamataki, Z.M Koszegi, Z.; Bacon, A.; Trapp, S.; Jones, B.J.; Hastoy, B.; Tomas, A.; Reissaus, C.; Linnemann, A.K.; D'Este, E.; Calebiro, D.; Johnsson, K.; Podewin, T.; Broichhagen, J.; Hodson, D.J. LUXendins reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. bioRxiv, preprint. doi: 10.1101/557132
  2. Sagert, L.; Hennig, F.; Thomas, C.; Tampé, R. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. eLife, 2020, 9, e55326. doi: 10.7554/eLife.55326
  3. Ast, J.; Arvaniti, A.; Fine, N.H.F.; Nasteska, D.; Ashford, F.B.; Stamataki, Z.; Koszegi, Z.; Bacon, A.; Jones, B.J.; Lucey, M.A.; Sasaki, S.; Brierley, D.I.; Hastoy, B.; Tomas, A.; D'Agostino, G.; Reimann, F.; Lynn, F.C.; Reissaus, C.A.; Linnemann, A.K.; D'Este, E.; Calebiro, D.; Trapp, S.; Johnsson, K.; Podewin, T.; Broichhagen, J.; Hodson, D.J. Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nature Communications, 2020, 11, 467. doi: 10.1038/s41467-020-14309-w

TFA-Amino modifier CPG 500

  1. Taskova, M.; Uhd, J.; Miotke, L.; Kubit, M.; Bell, J.; Ji, H.P.; Astakhova, K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Analytical Chemistry, 2017, 89(8), 4363–4366. doi: 10.1021/acs.analchem.7b00646

THPTA ligand

  1. Ramey-Ward, A.N.; Su, H.; Salaita, K. Mechanical stimulation of adhesion receptors using light-responsive nanoparticle actuators enhances myogenesis. ACS Applied Materials & Interfaces, 2020, 12(32), 35903–35917. doi: 10.1021/acsami.0c08871
  2. Hahn, F.; Niesar, A.; Wangen, C.; Wild, M.; Grau, B.; Herrmann, L.; Capci, A.; Adrait, A.; Couté, Y.; Tsogoeva, S.B.; Marschall, M. Target verification of artesunate-related antiviral drugs: assessing the role of mitochondrial and regulatory proteins by click chemistry and fluorescence labeling. Antiviral Research, 2020, 180, 104861. doi: 10.1016/j.antiviral.2020.104861
  3. Kleinpenning, F.; Steigenberger, B.; Wu, W.; Heck, A.J.R. Fishing for newly synthesized proteins with phosphonate-handles. Nature Communications, 2020, 11, 3244. doi: 10.1038/s41467-020-17010-0
  4. Zhou, J.; Wang, W.; Zhang, J.; Du, Z.; Yang, H.; Zhang, G. Click chemistry-based imaging to study tissue distribution of curcumin-protein complex in mice. Food & Function, 2020, 11(2), 1684–1691. doi: 10.1039/c9fo02012h
  5. Wang, Y.; Dattmore, D.A.; Wang, W:; Pohnert, G.; Wolfram, S.; Zhang, J.; Yang, R.; Decker, E.A.; Lee, K.S.S.; Zhang, G. trans, trans-2,4-decadienal, a lipid peroxidation product, induces inflammatory responses via Hsp90- or 14–3-3ζ-dependent mechanisms. Journal of Nutritional Biochemistry, 2020, 76, 108286. doi: 10.1016/j.jnutbio.2019.108286
  6. Sundah, N.R.; Ho, N.R.Y.; Lim, G.S.; Natalia, A.; Ding, X.; Liu, Y.; Seet, J.E.; Chan, C.W.; Loh, T.P.; Shao, H. Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution. Nature Biomedical Engineering, 2019, 3(9), 684–694. doi: 10.1038/s41551-019-0417-0
  7. Yang, H.; Sukamtoh, E.; Du, Z.; Wang, W.; Ando, M.; Kwakwa, Y.N.; Zhang, J.; Zhang, G. Click chemistry approach to characterize curcumin-protein interactions in vitro and in vivo}. The Journal of Nutritional Biochemistry, 2019, 68, 1–6. doi: 10.1016/j.jnutbio.2019.02.010
  8. Wilder, L.M.; Fies, W.A.; Rabin, C.; Webb, L.J.; Crooks, R.M. Conjugation of an α-Helical Peptide to the Surface of Gold Nanoparticles. Langmuir, 2019, 35(9), 3363–3371. doi: 10.1021/acs.langmuir.9b00075

dsGreen Gel Staining Solution, 10000×

  1. Chetverikov, P.E.; Cvrković, T.; Efimov, P.G.; Klimov, P.B.; Petanović, R.U.; Romanovich, A.E.; Schubert, M.A.; Sukhareva, S.I.; Zukoff, S.N.; Amrine, J. Molecular phylogenetic analyses reveal a deep dichotomy in the conifer-inhabiting genus Trisetacus (Eriophyoidea: Nalepellidae), with the two lineages differing in their female genital morphology and host associations. Experimental and Applied Acarology, 2020, 81(3), 287–316. doi: 10.1007/s10493-020-00503-4
  2. Kirkham, C.M.; Scott, J.N.F.; Wang, X.; Smith, A.L.; Kupinski, A.P.; Ford, A.M.; Westhead, D.R.; Stockley, P.G.; Tuma, R.; Boyes, J. Cut-and-Run: A Distinct Mechanism by which V(D)J Recombination Causes Genome Instability. Molecular Cell, 2019, 74(3), 584–597.e9. doi: 10.1016/j.molcel.2019.02.025
  3. Komarova, N.; Andrianova, M.; Glukhov, S.; Kuznetsov, A. Selection, Characterization, and Application of {ssDNA} Aptamer against Furaneol. Molecules, 2018, 23(12), 3159. doi: 10.3390/molecules23123159
  4. Zietzer, A.; Buschmann, E.E.; Janke, D.; Li, L.; Brix, M.; Meyborg, H.; Stawowy, P.; Jungk, C.; Buschmann, I.; Hillmeister, P. Acute Physical Exercise and Long-Term Individual Shear Rate Therapy Increase Telomerase Activity in Human Peripheral Blood Mononuclear Cells. Acta Physiologica, 2017, 220(2), 251–262. doi: 10.1111/apha.12820
  5. Diaz-Romero, J.; Kürsener, S.; Kohl, S.; Nesic, D. S100B+A1 CELISA: A Novel Potency Assay and Screening Tool for Redifferentiation Stimuli of Human Articular Chondrocytes. Journal of Cellular Physiology, 2017, 232(6), 1559–1570. doi: 10.1002/jcp.25682
  6. Richter-Heitmann, T.; Eickhorst, T.; Knauth, S.; Friedrich, M.W.; Schmidt, H. Evaluation of Strategies to Separate Root-Associated Microbial Communities: A Crucial Choice in Rhizobiome Research. Frontiers in Microbiology, 2016, 7, 773. doi: 10.3389/fmicb.2016.00773
  7. Jain, D.; Siede, W. Rad5 Template Switch Pathway of DNA Damage Tolerance Determines Synergism between Cisplatin and NSC109268 in Saccharomyces cerevisiae. PLoS ONE, 2013, 8(10), e77666. doi: 10.1371/journal.pone.0077666
  8. Song, C.-X.; Sun, Y.; Dai, Q.; Lu, X.-Y.; Yu, M.; Yang, C.-G.; He, C. Detection of 5-Hydroxymethylcytosine in DNA by Transferring a Keto-Glucose by Using T4 Phage beta-Glucosyltransferase. ChemBioChem, 2011, 12(11), 1682-1685. doi: 10.1002/cbic.201100278
  9. Song, C.-X.; Yu, M.; Dai, Q.; He, C. Detection of 5-hydroxymethylcytosine in a combined glycosylation restriction analysis (CGRA) using restriction enzyme Taq[alpha]I. Bioorganic & Medicinal Chemistry Letters, 2011, 21(17), 5075-5077. doi: 10.1016/j.bmcl.2011.03.118

dsGreen for Real-Time PCR, 100×

  1. Sapozhnikova, Y.P.; Koroleva, A.G.; Yakhnenko, V.M.; Tyagun, M.L.; Glyzina, O.Y.; Coffin, A.B.; Makarov, M.M.; Shagun, A.N.; Kulikov, V.A.; Gasarov, P.V.; Kirilchik, S.V.; Klimenkov, I.V.; Sudakov, N.P.; Anoshko, P.N.; Kurashova, N.A.; Sukhanova, L.V. Molecular and cellular responses to long-term sound exposure in peled (Coregonus peled). Journal of the Acoustical Society of America, 2020, 148(2), 895–907. doi: 10.1121/10.0001674
  2. Thompson, T.A.; Touré, M.B.; Sanogo, D.; Shaffer, J.G.; Doumbia, S.O.; Krogstad, D.J. Template copy number and the sensitivity of quantitative PCR for Plasmodium falciparum in asymptomatic individuals. Malaria Journal, 2020, 19, 295. doi: 10.1186/s12936-020-03365-8
  3. Garafutdinov, R.R.; Gilvanov, A.R.; Kupova, O.Y.; Sakhabutdinova, A.R. Effect of metal ions on isothermal amplification with Bst exo- DNA polymerase. International Journal of Biological Macromolecules, 2020, 161, 1447–1455. doi: 10.1016/j.ijbiomac.2020.08.028
  4. Sakhabutdinova, A.R.; Chemeris, A.V.; Garafutdinov, R.R. Enhancement of PCR efficiency using mono- and disaccharides. Analytical Biochemistry, 2020, 606, 113858. doi: 10.1016/j.ab.2020.113858
  5. Garafutdinov, R.R.; Sakhabutdinova, A.R.; Kupryushkin, M.S.; Pyshnyi, D.V. Data on multimerization efficiency for short linear DNA templates and phosphoryl guanidine primers during isothermal amplification with Bst exo- DNA polymerase. Data in Brief, 2020, 29, 105188. doi: 10.1016/j.dib.2020.105188
  6. Garafutdinov, R.R.; Gilvanov, A.R.; Sakhabutdinova, A.R. The Influence of Reaction Conditions on DNA Multimerization During Isothermal Amplification with Bst exo– DNA Polymerase. Applied Biochemistry and Biotechnology, 2020, 190(2), 758–771. doi: 10.1007/s12010-019-03127-6
  7. Garafutdinov, R.R.; Sakhabutdinova, A.R.; Kupryushkin, M.S.; Pyshnyi, D.V. Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo- DNA polymerase. Biochimie, 2020, 168, 259–267. doi: 10.1016/j.biochi.2019.11.013
  8. Schwenk, J.; Boudkkazi, S.; Kocylowski, M.K.; Brechet, A.; Zolles, G.; Bus, T.; Costa, K.; Kollewe, A.; Jordan, J.; Bank, J.; Bildl, W.; Sprengel, R.; Kulik, A.; Roeper, J.; Schulte, U.; Fakler, B. An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity. Neuron, 2019, 104(4), 680–692.e9. doi: 10.1016/j.neuron.2019.08.033
  9. Yang, F.; Teoh, F.; Tan, A.S.M.; Cao, Y.; Pavelka, N.; Berman, J. Aneuploidy enables cross-adaptation to unrelated drugs. Molecular Biology and Evolution, 2019, 36(8), 1768–1782. doi: 10.1093/molbev/msz104
  10. Segal, E.S.; Gritsenko, V.; Levitan, A.; Yadav, B.; Dror, N.; Steenwyk, J.L.; Silberberg, Y.; Mielich, K.; Rokas, A.; Gow, N.A.R.; Kunze, R.; Sharan, R.; Berman, J. Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans. mBio, 2018, 9(5), e02048-18. doi: 10.1128/mBio.02048-18
  11. Maximova, N.; Koroleva, A.; Sitnikova, T.; Khanaev, I.; Bukin, Y.; Kirilchik, S. Age Dynamics of Telomere Length of Baikal Gastropods is Sex Specific and Multidirectional. Folia Biologica (Kraków), 2017, 65(4), 187–197. doi: 10.3409/fb65_4.187
  12. Schmidt, N.; Kollewe, A.; Constantin, C.E.; Henrich, S.; Ritzau-Jost, A.; Bildl, W.; Saalbach, A.; Hallermann, S.; Kulik, A.; Fakler, B.; Schulte, U. Neuroplastin and Basigin Are Essential Auxiliary Subunits of Plasma Membrane Ca2+-ATPases and Key Regulators of Ca2+ Clearance. Neuron, 2017, 96(4), 827–838.e9. doi: 10.1016/j.neuron.2017.09.038
  13. Sharangdhar, T.; Sugimoto, Y.; Heraud-Farlow, J.; Fernández-Moya, S.M.; Ehses, J.; Ruiz de Los Mozos, I.; Ule, J.; Kiebler, M.A. A retained intron in the 3'-UTR of Calm3 mRNA mediates its Staufen2- and activity-dependent localization to neuronal dendrites. EMBO Reports, 2017, 18(10), 1762–1774. doi: 10.15252/embr.201744334
  14. Revalde, J.L.; Li, Y.; Wijeratne, T.S.; Bugde, P.; Hawkins, B.C.; Rosengren, R.J.; Paxton, J.W. Curcumin and its cyclohexanone analogue inhibited human Equilibrative nucleoside transporter 1 (ENT1) in pancreatic cancer cells. European Journal of Pharmacology, 2017, 803, 167–173. doi: 10.1016/j.ejphar.2017.03.055
  15. Wu, Z.-G.; Jiang, W.; Chen, S.-L.; Mantri, N.; Tao, Z.-M.; Jiang, C.-X. Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation. Frontiers in Plant Science, 2016, 7, 1653. doi: 10.3389/fpls.2016.01653
  16. Brauer, V.S.; Stomp, M.; Bouvier, T.; Fouilland, E.; Leboulanger, C.; Confurius-Guns, V.; Weissing, F.J.; Stal, L.J.; Huisman, J. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community. Frontiers in Microbiology, 2015, 5, 795. doi: 10.3389/fmicb.2014.00795

sulfo-Cyanine3 DBCO

  1. Tugel, U.; Casas, M.G.; Wiltschi, B. Site-Specific Incorporation of Non-canonical Amino Acids by Amber Stop Codon Suppression in Escherichia coli. Peptide and Protein Engineering (Springer Protocols Handbooks), 2020, 267–281. doi: 10.1007/978-1-0716-0720-6_14
  2. Desai, B.J.; Gonzalez, R.L. Multiplexed genomic encoding of non-canonical amino acids for labeling large complexes. Nature Chemical Biology, 2020, 16, 1129–1135. doi: 10.1038/s41589-020-0599-5

sulfo-Cyanine5 DBCO

  1. Desai, B.J.; Gonzalez, R.L. Multiplexed genomic encoding of non-canonical amino acids for labeling large complexes. Nature Chemical Biology, 2020, 16, 1129–1135. doi: 10.1038/s41589-020-0599-5
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.