3-Ethynyl perylene
Cat. # | Quantity | Price | Lead time | Buy this product |
---|---|---|---|---|
555B0 | 50 mg | $50.00 | in stock | |
655B0 | 100 mg | $80.00 | in stock |
Perylene is PAH (polycyclic aromatic hydrocarbon) containing five fused rings. Planarity of this molecule gives rise to its ruggedness, low solubility of its derivatives, as well as its outstanding fluorescence.
Perylene possesses intense green fluorescence, great photostability, and quantum yield approaching unity. This makes this PAH one of the most promising blocks for the design of new molecular probes, functional materials, and molecular devices.
This molecule contains alkyne group ready for Click Chemistry, as well as for other coupling reactions such as Sonogashira cross-coupling.
Perylene absorption and emission spectra

Customers also purchased with this product
BDP FL maleimide
BDP FL maleimide is a bright and photostable thiol-reactive dye for protein labeling, an ideal replacement for fluorescein for microscopy.FAM azide, 6-isomer
FAM (fluorescein) azide, 6-isomer is a commonly used fluorescent dye azide for Click Chemistry.Cyanine5.5 azide
Far red / near infrared fluorescent Cyanine5.5 dye derivative for Click Chemistry.General properties
Appearance: | orange solid |
Molecular weight: | 276.33 |
CAS number: | 132196-66-8 |
Molecular formula: | C22H12 |
IUPAC name: | 3-Ethynylperylene |
Solubility: | good in chlorinated organic solvents (DCM, chloroform), moderate in DMF, low in alcohols |
Quality control: | NMR 1H (95%) and 13C, TLC |
Storage conditions: | Storage: 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. |
MSDS: | Download |
Product specifications |
Spectral properties
Excitation/absorption maximum, nm: | 435; 408; 252 |
ε, L⋅mol−1⋅cm−1: | 36000 |
Emission maximum, nm: | 439; 467 |
Fluorescence quantum yield: | 1.0 |
Product citations
- Beri, D.; Jakoby, M.; Howard, I.A.; Busko, D.; Richards, B.S.; Turshatov, A. Improved photon absorption in dye-functionalized silicon nanocrystals synthesized via microwave-assisted hydrosilylation. Dalton Transactions, 2020, 49(7), 2290–2299. doi: 10.1039/c9dt04497c
