3-Ethynylperylene
Cat. # | Quantity | Price | Lead time | Buy this product |
---|---|---|---|---|
555B0 | 50 mg | $100 | in stock | |
655B0 | 100 mg | $160 | in stock |
Perylene is PAH (polycyclic aromatic hydrocarbon) containing five fused rings. Planarity of this molecule gives rise to its ruggedness, low solubility of its derivatives, as well as its outstanding fluorescence.
Perylene possesses intense green fluorescence, great photostability, and quantum yield approaching unity. This makes this PAH one of the most promising blocks for the design of new molecular probes, functional materials, and molecular devices.
This molecule contains alkyne group ready for Click Chemistry, as well as for other coupling reactions such as Sonogashira cross-coupling.
Perylene absorption and emission spectra
Recommended protocol
Calculator
Customers also purchased with this product
Cyanine3.5 NHS ester
Cyanine3.5 dye NHS ester derivative the labeling of amino-groups in biomolecules.get free express delivery
Cyanine5.5 NHS ester
Cyanine5.5 NHS is far-red / near-infrared amine-reactive dye.get free express delivery
BDP® 558/568 alkyne
BDP 558/568 is a borondipyrromethene dye for Cyanine3-channel. This product is a terminal alkyne derivative for copper-catalyzed click chemistry.General properties
Appearance: | orange solid |
Molecular weight: | 276.33 |
CAS number: | 132196-66-8 |
Molecular formula: | C22H12 |
IUPAC name: | 3-Ethynylperylene |
Solubility: | good in chlorinated organic solvents (DCM, chloroform), moderate in DMF, low in alcohols |
Quality control: | NMR 1H (95%) and 13C, TLC |
Storage conditions: | Storage: 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. |
MSDS: | Download |
Product specifications |
Spectral properties
Excitation/absorption maximum, nm: | 435; 408; 252 |
ε, L⋅mol−1⋅cm−1: | 36000 |
Emission maximum, nm: | 439; 467 |
Fluorescence quantum yield: | 1.0 |
Product citations
- Beri, D.; Jakoby, M.; Howard, I.A.; Busko, D.; Richards, B.S.; Turshatov, A. Improved photon absorption in dye-functionalized silicon nanocrystals synthesized via microwave-assisted hydrosilylation. Dalton Transactions, 2020, 49(7), 2290–2299. doi: 10.1039/c9dt04497c
- Beri, D.; Jakoby, M.; Busko, D.; Richards, B.S.; Turshatov, A. Enhancing Singlet Oxygen Generation in Conjugates of Silicon Nanocrystals and Organic Photosensitizers. Frontiers in Chemistry, 2020, 8, 567. doi: 10.3389/fchem.2020.00567