Sulfo-Cyanine5 azide

Cat. # Quantity Price Lead time
A3330 1 mg $110.00 in stock
B3330 5 mg $290.00 in stock
C3330 10 mg $470.00 in stock
D3330 25 mg $690.00 in stock
E3330 50 mg $1270.00 in stock
F3330 100 mg $1990.00 in stock

Water-soluble Cyanine5 dye azide for Click chemistry. Bright and photostable dye with red fluorescence. The reagent has high water solubility. Due to high solubility and hydrophilicity, the dye can be used for labeling biomolecules in native, purely aqueous conditions.

This reagent, as opposed to competing products, is supplied as an alkaline metal salt and not triethylammonium salt. Therefore, it is a powder which is easy to handle and dispense.

Sulfo-Cyanine5 is an analog of Cy5®, a very popular fluorophore, therefore this reagent is compatible to a wide range of standard fluorescent instrumentation such as imagers, plate readers, and microscopes.

Sulfo-Cyanine5 absorbance and emission spectra

Sulfo-Cyanine5 absorbance and emission spectra

Customers also purchased with this product

Cyanine5 amine

Cyanine5 amine functionalized dye for the coupling with activated esters and epoxides.

Cyanine7.5 maleimide

Cyanine7.5 maleimide is a thiol reactive near infrared dye.
Add this product to your cart and
get free express delivery

Cyanine3 maleimide

Cyanine3 maleimide is a thiol mono reactive dye.

General properties

Appearance: dark blue crystals
Molecular weight: 746.87
Molecular formula: C35H43N6NaO7S2
Solubility: very high in water
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light.
MSDS: Download

Spectral properties

Excitation maximum, nm: 646
ε, L⋅mol−1⋅cm−1: 271000
Emission maximum, nm: 662
Fluorescence quantum yield: 0.28
CF260: 0.04
CF280: 0.04

Product citations

  1. Rambarran, T.; Gonzaga, F.; Fatona, A.; Coulson, M.; Saem, S.; Moran-Mirabal, J.; Brook, M.A. Bonding and in-channel microfluidic functionalization using the huisgen cyclization. ournal of Polymer Science Part A: Polymer Chemistry, in press. doi: 10.1002/pola.28930
  2. Chen, L., Payumo, A.Y.; Hirose, K.; Bigley, R.B.; Lovas, J.; Kuruvilla, R.; Huang, G.N. Sympathetic Nerve Activity Promotes Cardiomyocyte Cell-Cycle Arrest And Binucleation. bioRxiv, 124347. doi: 10.1101/124347
  3. Franke, C.E.; Czapar, A.E.; Patel, R.B.; Steinmetz, N.F. Tobacco Mosaic Virus-Delivered Cisplatin Restores Efficacy in Platinum-Resistant Ovarian Cancer Cells. Molecular Pharmaceutics, in press. doi: 10.1021/acs.molpharmaceut.7b00466
  4. Zhao, M.; Steffen, F.D.; and Börner, R.; Schaffer, M.F.; Sigel, R.K.O.; Freisinger, E. Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Research, in press. doi: 10.1093/nar/gkx1100
  5. Gupta, S.; M-Redmond, T; Meng, F.; Tidball, A.; Akil, H.; Watson, S.; Parent, J.M.; Uhler, M.; others. Fibroblast Growth Factor 2 Regulates Activity and Gene Expression of Human Postmitotic Excitatory Neuron. Journal of Neurochemistry, in press. doi: 10.1111/jnc.14255
  6. Rachel, N.M.; Toulouse, J.L.; Pelletier, J.N. Transglutaminase-Catalyzed Bioconjugation Using One-Pot Metal-Free Bioorthogonal Chemistry. Bioconjugate Chemistry, 2017, 28(10), 2518–2523. doi: 10.1021/acs.bioconjchem.7b00509
  7. Gulati, N.M.; Pitek, A.S.; Steinmetz, N.F.; Stewart, P.L. Cryo-electron tomography investigation of serum albumin-camouflaged tobacco mosaic virus nanoparticles. Nanoscale, 2017, 9(10), 3408–3425. doi: 10.1039/c6nr06948g
  8. Long, M.J.; Lin, H.-Y.; Parvez, S.; Zhao, Y.; Poganik, J.R.; Huang, P.; Aye, Y. β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling. Cell Chemical Biology, 2017, 24(8), 944–957.e7. doi: 10.1016/j.chembiol.2017.06.009
  9. Parvez, S.; Long, M.J.C.; Lin, H.-Y.; Zhao, Y.; Haegele, J.A.; Pham, V.N.; Lee, D.K.; Aye, Y. T-REX on-demand redox targeting in live cells. Nature Protocols, 2016, 11(12), 2328–2356. doi: 10.1038/nprot.2016.114
  10. Farzan, V.M.; Aparin, I.O.; Veselova, O.A.; Podkolzin, A.T.; Shipulin, G.A.; Korshun, V.A.; Zatsepin, T.S. Cy5/BHQ dye-quencher pairs in fluorogenic qPCR probes: effects of charge and hydrophobicity. Analytical Methods, 2016, 8(29), 5826–5831. doi: 10.1039/c6ay01304j
  11. Pitek, A.S.; Jameson, S.A.; Veliz, F.A.; Shukla, S.; Steinmetz, N.F. Serum Albumin "Camouflage" of Plant Virus Based Nanoparticles Prevents Their Antibody Recognition and Enhances Pharmacokinetics. Biomaterials, 2016, 89, 89–97. doi: 10.1016/j.biomaterials.2016.02.032
  12. Bruckman, M.; Randolph, L.; Gulati, N.; Stewart, P.; Steinmetz, N.F. Silica mineralization of Gd(DOTA)-loaded viral nanoparticles enhances MRI relaxivity and avoids immune recognition. Journal of Materials Chemistry B, 2015, 3(38), 7503–7510. doi: 10.1039/c5tb01014d
  13. Li, F.; Dong, J.; Hu, X.; Gong, W.; Li, J.; Shen, J.; Tian, H.; Wang, J. A Covalent Approach for Site-Specific RNA Labeling in Mammalian Cells. Angewandte Chemie International Edition, 2015, 54(15), 4597–4602. doi: 10.1002/anie.201410433
  14. Maruani, A.; Smith, M.E.B.; Miranda, E.; Chester, K.A.; Chudasama, V.; Caddick, S. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nature communications, 2015, 6, 6645. doi: 10.1038/ncomms7645
  15. Nikić, I.; Kang, J.H.; Girona, G.E.; Aramburu, I.V.; Lemke, E.A. Labeling proteins on live mammalian cells using click chemistry. Nature Protocols, 2015, 10(5), 780–791. doi: 10.1038/nprot.2015.045
  16. Wen, A.M.; Infusino, M.; De Luca, A.; Kernan, D.L.; Czapar, A.E.; Strangi, G.; Steinmetz, N.F. Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics. Bioconjugate Chemistry, 2015, 26(1), 51–62. doi: 10.1021/bc500524f
  17. Maruani, A.; Alom, S.; Canavelli, P.; Lee, M.T.W.; Morgan, R.E.; Chudasama, V.; Caddick, S. A mild TCEP-based para-azidobenzyl cleavage strategy to transform reversible cysteine thiol labelling reagents into irreversible conjugates. Chemical Communications, 2015, 51, 5279–5282. doi: 10.1039/c4cc08515a
  18. Bruckman, M.A.; Randolph, L.N.; VanMeter, A.; Hern, S.; Shoffstall, A.J.; Taurog, R.E.; Steinmetz, N.F. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology, 2014, 449, 163-173. doi: 10.1016/j.virol.2013.10.035
  19. Bruckman, M.A.; Steinmetz, N.F. Chemical Modification of the Inner and Outer Surfaces of Tobacco Mosaic Virus (TMV). Methods in Molecular Biology (Virus Hybrids as Nanomaterials), 2014, 1108, 173-185. doi: 10.1007/978-1-62703-751-8_13
  20. Sloniec, J.; Resch-Genger, U.; Hennig, A. Photophysics and Release Kinetics of Enzyme-Activatable Optical Probes Based on H-Dimerized Fluorophores on Self-Immolative Linkers. The Journal of Physical Chemistry B, 2013, 117(46), 14336-14344. doi: 10.1021/jp409388b
Show more (16)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.