Cyanine7 NHS ester

Cat. # Quantity Price Lead time
15020 1 mg 110.00$ in stock
25020 5 mg 210.00$ in stock
45020 25 mg 410.00$ in stock
55020 50 mg 695.00$ in stock
65020 100 mg 1190.00$ 5 days

Amine reactive Cyanine7, near infrared fluorescent dye, an improved analog of Cy7®.

NIR fluorophores can be used to take advantage of near infrared window of biological tissues - increased transparency of tissues in this spectral region allows to carry out in vivo imaging.

This reagent can be utilized to produce Cyanine7-labeled biomolecules for subsequent use in various in vivo research, and drug design related experiments.

The structure of Cyanine7 features rigidized design of central polymethyne chain. This molecular reinforcement allows to increase quantum yield by 20% compared with parent structure, increasing fluorescence brightness.

This reagent requires organic co-solvent for the labeling (please see Recommended Protocols section below). Water-soluble Cyanine7 NHS ester is also available, and recommended for protein NIR labeling.

Cy7 absorbance and emission spectra

Cy7 absorbance and emission spectra

Customers also purchased with this product

AmdU (5-azidomethyl-2'-deoxyuridine)

Azidomethyldeoxyuridine (AmdU) is an azide containing nucleoside that is incorporated into nascent DNA by cellular polymerases. The azide groups attached to DNA this way can be subsequently modified with alkynes or cycloalkynes via copper-catalyzed or strain promoted Click chemistry.

Cyanine7.5 amine

Near infrared dye Cyanine7.5 with free amino group.

Pyrene azide 2

Pyrene azide with longer linker, for Click Chemistry.

General properties

Appearance: green powder
Molecular weight: 682.29
Molecular formula: C41H48ClN3O4
Solubility: soluble in organic solvents (DMSO, DMF, dichloromethane), low solubility in water
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

Excitation maximum, nm: 750
ε, L⋅mol−1⋅cm−1: 199000
Emission maximum, nm: 773
Fluorescence quantum yield: 0.3
CF260: 0.022
CF280: 0.029

Product citations

  1. Lionel, S.; Bousseksou, A.; Gabor, M.; Suleimanov, I. Near-infrared luminescence switching in a spin-crossover polymer nanocomposite. European Journal of Inorganic Chemistry, in press. doi: 10.1002/ejic.201700426
  2. Wang, Y.; Malcolm, D.W.; Benoit, D.S.W. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials, 2017, 139, 127–138. doi: 10.1016/j.biomaterials.2017.06.001
  3. Zhang, R.; Yang, J.; Radford, D.C.; Fang, Y.; Kopeček, J. FRET Imaging of Enzyme-Responsive HPMA Copolymer Conjugate. Macromolecular Bioscience, 2017, 17(1), 1600125. doi: 10.1002/mabi.201600125
  4. Shen, T.; Xu, X.; Guo, L.; Tang, H.; Diao, T.; Gan, Z.; Zhang, G.; Yu, Q. Efficient Tumor Accumulation, Penetration and Tumor Growth Inhibition Achieved by Polymer Therapeutics: The Effect of Polymer Architectures. Biomacromolecules, 2017, 18(1), 217–230. doi: 10.1021/acs.biomac.6b01533
  5. Kilic, E.; Novoselova, M.V.; Lim, S.H.; Pyataev, N.A.; Pinyaev, S.I.; Kulikov, O.A.; Sindeeva, O.A.; Mayorova, O.A.; Murney, R.; Antipina, M.N.; Haigh, B.; Sukhorukov, G.B.; Kiryukhin, M.V. Formulation for Oral Delivery of Lactoferrin Based on Bovine Serum Albumin and Tannic Acid Multilayer Microcapsules. Scientific Reports, 2017, 7, 44159. doi: 10.1038/srep44159
  6. Beldman, T.J.; Senders, M.L.; Alaarg, A.; Perez-Medina, C.; Tang, J.; Zhao, Y.; Fay, F.; Deichmöller, J.; Born, B.; Desclos, E.; van der Wel, N.N.; Hoebe, R.A.; Kohen, F.; Kartvelishvily, E.; Neeman, M.; Reiner, T.; Calcagno, C.; Fayad, Z.A.; de Winther, M.P.J.; Lutgens, E.; Mulder, W.J.M.; Kluza, E. Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano, 2017, 11(6), 5785–5799. doi: 10.1021/acsnano.7b01385
  7. Rudnick-Glick, S.; Corem-Salkmon, E.; Grinberg, I.; Margel, S. Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol) bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model. Journal of Nanobiotechnology, 2016, 14, 80. doi: 10.1186/s12951-016-0233-6
  8. Xu, X.; Xu, Z.; Liu, J.; Zhang, Z.; Chen, H.; Li, X.; Shi, S. Visual tracing of diffusion and biodistribution for amphiphilic cationic nanoparticles using photoacoustic imaging after ex vivo intravitreal injections. International Journal of Nanomedicine, 2016, 11, 5079–5086. doi: 10.2147/IJN.S109986
  9. Gera, L.; Charest-Morin, X.; Jean, M.; Bachelard, H.; Marceau, F. Infrared-emitting, peptidase-resistant fluorescent ligands of the bradykinin B2 receptor: application to cytofluorometry and imaging. BMC Research Notes, 2016, 9, 452. doi: 10.1186/s13104-016-2258-1
  10. Zhao, L.; Ma, S.; Pan, Y.; Zhang, Q.; Wang, K.; Song, D.; Wang, X.; Feng, G.; Liu, R.; Xu, H.; Zhang, J.; Qiao, M.; Kong, D. Functional Modification of Fibrous PCL Scaffolds with Fusion Protein VEGF-HGFI Enhanced Cellularization and Vascularization. Advanced Healthcare Materials, 2016, 5(18), 2376–2385. doi: 10.1002/adhm.201600226
  11. Sui, B.; Zhong, G.; Sun, J. Drug-loadable Mesoporous Bioactive Glass Nanospheres: Biodistribution, Clearance, BRL Cellular Location and Systemic Risk Assessment via 45Ca Labelling and Histological Analysis. Scientific Reports, 2016, 6, 33443. doi: 10.1038/srep33443
  12. Su, S.; Wang, J.; Vargas, E.; Wei, J.; Martinez-Zaguilan, R.; Sennoune, S.R.; Pantoya, M.L.; Wang, S.; Chaudhuri, J.; Qiu, J. Porphyrin Immobilized Nano-Graphene Oxide for Enhanced and Targeted Photothermal Therapy of Brain Cancer. ACS Biomaterials Science & Engineering, 2016, 2(8), 1357–1366. doi: 10.1021/acsbiomaterials.6b00290
  13. Zhang, L.; Navaratna, T.; Thurber, G.M. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity , 2016, 27(7), 1663–1672. doi: 10.1021/acs.bioconjchem.6b00209
  14. Pérez-Medina, C.; Abdel-Atti, D.; Tang, J.; Zhao, Y.; Fayad, Z.A.; Lewis, J.S.; Mulder, W.J.M.; Reiner, T. Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nature Communications, 2016, 7, 11838. doi: 10.1038/ncomms11838
  15. Zhao, Y.; Fay, F.; Hak, S.; Manuel Perez-Aguilar, J.; Sanchez-Gaytan, B.L.; Goode, B.; Duivenvoorden, R.; de Lange Davies, C.; Bjørkøy, A.; Weinstein, H.; Fayad, Z.A.; Pérez-Medina, C.; Mulder, W.J.M. Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nature Communications, 2016, 7, 11221. doi: 10.1038/ncomms11221
  16. Dhande, Y.K.; Wagh, B.S.; Hall, B.C.; Sprouse, D.; Hackett, P.B.; Reineke, T.M. N-Acetylgalactosamine Block-co-Polycations Form Stable Polyplexes with Plasmids and Promote Liver-Targeted Delivery. Biomacromolecules, 2016, 17(3), 830–840. doi: 10.1021/acs.biomac.5b01555
  17. Kim, J.B.; Park, K.; Ryu, Ji.; Lee, J.J.; Lee, M.W.; Cho, H.S.; Nam, H.S.; Park, O.K.; Song, J.W.; Kim, T.S.; Oh, D.J.; Gweon, D.; Oh, W.-Y.; Yoo, H.; Kim, J.W. Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors. Scientific Reports, 2016, 6, 22608. doi: 10.1038/srep22608
  18. Tolstyka, Z.P.; Phillips, H.; Cortez, M.; Wu, Y.; Ingle, N.; Bell, J.B.; Hackett, P.B.; Reineke, T.M. Trehalose-Based Block Copolycations Promote Polyplex Stabilization for Lyophilization and in Vivo pDNA Delivery. ACS Biomaterials Science & Engineering, 2016, 2(1), 43–55. doi: 10.1021/acsbiomaterials.5b00312
  19. Turcheniuk, K.; Dumych, T.; Bilyy, R.; Turcheniuk, V.; Bouckaert, J.; Vovk, V.; Chopyak, V.; Zaitsev, V.; Mariot, P.; Prevarskaya, N.; Boukherrouba, R.; Szunerits, S. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Advances, 2016, 6(2), 1600–1610. doi: 10.1039/c5ra24662h
  20. Rudnick-Glick, S.; Corem-Salkmon, E.; Grinberg, I.; Yehuda, R.; Margel, S. Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model. Journal of Nanobiotechnology, 2015, 13(1), 80. doi: 10.1186/s12951-015-0126-0
  21. Alexander, S.C.; Busby, K.N.; Cole, C.M.; Zhou, C.Y.; Devaraj, N.K. Site-Specific Covalent Labeling of RNA by Enzymatic Transglycosylation. Journal of the American Chemical Society, 2015, 137(40), 12756–12759. doi: 10.1021/jacs.5b07286
  22. Yu, Q.; Wei, Z.; Shi, J.; Guan, S.; Du, N.; Shen, T.; Tang, H.; Jia, B.; Wang, F.; Gan, Z. Polymer-Doxorubicin Conjugate Micelles Based on Poly(ethylene glycol) and Poly(N-(2-hydroxypropyl) methacrylamide): Effect of Negative Charge and Molecular Weight on Biodistribution and Blood Clearance. Biomacromolecules, 2015, 16(9), 2645–2655. doi: 10.1021/acs.biomac.5b00460
  23. Mwangi, T.K.; Bowles, R.D.; Tainter, D.M.; Bell, R.D.; Kaplan, D.L.; Setton, L.A. Synthesis and characterization of silk fibroin microparticles for intra-articular drug delivery. International Journal of Pharmaceutics, 2015, 485(1–2), 7–14. doi: 10.1016/j.ijpharm.2015.02.059
  24. Shi, Y.; van der Meel, R.; Theek, B.; Oude Blenke, E.; Pieters, E.H.E.; Fens, M.H.A.M.; Ehling, J.; Schiffelers, R.M.; Storm, G.; van Nostrum, C.F.; Lammers, T.; Hennink, W.E. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π–Π Stacking Stabilized Polymeric Micelles. ACS Nano, 2015, 9(4), 3740–3752. doi: 10.1021/acsnano.5b00929
  25. Zhang, J.; Wang, G.; Mao, D.; Han, A.; Xiao, N.; Qi, X.; Ding, D.; Kong, D. Targeted In Vivo Imaging of Mouse Hindlimb Ischemia Using Fluorescent Gelatin Nanoparticles. Journal of Nanomaterials, 2015, 2015, Article ID 704817
  26. Choi, E.B.; Choi, J.; Bae, S.R.; Kim, H.-O.; Jang, E.; Kang, B.; Kim, M.-H.; Kim, B.; Suh, J.-S.; Lee, K. et al. Colourimetric redox-polyaniline nanoindicator for in situ vesicular trafficking of intracellular transport. Nano Research, 2015, 8(4), 1169–1179. doi: 10.1007/s12274-014-0597-6
  27. Brady, M.L.; Raghavan, R.; Singh, D.; Anand, P.; Fleisher, A.S.; Mata, J.; Broaddus, W.C.; Olbricht, W.L. In vivo performance of a microfabricated catheter for intraparenchymal delivery. Journal of Neuroscience Methods, 2014, 229, 76-83. doi: 10.1016/j.jneumeth.2014.03.016
  28. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  29. Lin, X.; Zhu, H.; Luo, Z.; Hong, Y.; Zhang, H.; Liu, X.; Ding, H.; Tian, H.; Yang, Z. Near-Infrared Fluorescence Imaging of Non-Hodgkin's Lymphoma CD20 Expression Using Cy7-Conjugated Obinutuzumab. Molecular Imaging and Biology, 2014. doi: 10.1007/s11307-014-0742-3
  30. Novo, L.; Rizzo, L.Y.; Golombek, S.K.; Dakwar, G.R.; Lou, B.; Remaut, K.; Mastrobattista, E.; van Nostrum, C.F.; Jahnen-Dechent, W.; Kiessling, F. et al. Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. Journal of Controlled Release, 2014, 195, 162-175. doi: 10.1016/j.jconrel.2014.08.028
  31. Zhao, Y.; Meek, G.A.; Levine, B.G.; Lunt, R.R. Near-Infrared Harvesting Transparent Luminescent Solar Concentrators. Advanced Optical Materials, 2014, 2(7), 606-611. doi: 10.1002/adom.201400103
  32. Skaat, H.; Corem-Salkmon, E.; Grinberg, I.; Last, D.; Goez, D.; Mardor, Y.; Margel, S. Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils. International Journal of Nanomedicine, 2013, 8, 4063–4076. doi: 10.2147/ijn.s52833
  33. Gluz, E.; Grinberg, I.; Corem-Salkmon, E.; Mizrahi, D.; Margel, S. Engineering of new crosslinked near-infrared fluorescent polyethylene glycol bisphosphonate nanoparticles for bone targeting. Journal of Polymer Science, Part A: Polymer Chemistry, 2013, 51(20), 4282-4291. doi: 10.1002/pola.26858
  34. Gluz, E.; Mizrahi, D.M.; Margel, S. Synthesis and characterization of new poly(ethylene glycol)bisphosphonate vinylic monomer and non-fluorescent and NIR-fluorescent bisphosphonate micrometer-sized particles. Polymer, 2013, 54(2), 565-571. doi: 10.1016/j.polymer.2012.11.071
  35. Saxena, T.; Karumbaiah, L.; Gaupp, E.A.; Patkar, R.; Patil, K.; Betancur, M.; Stanley, G.B.; Bellamkonda, R.V. The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials, 2013, 34(20), 4703-4713. doi: 10.1016/j.biomaterials.2013.03.007
Show more (31)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.