Cyanine7 NHS ester

Cat. # Quantity Price Lead time
15020 1 mg $110.00 in stock
25020 5 mg $210.00 in stock
45020 25 mg $410.00 in stock
55020 50 mg $695.00 in stock
65020 100 mg $1190.00 in stock
Delivery options for stock items

Amine reactive Cyanine7, near infrared fluorescent dye, an improved analog of Cy7®.

NIR fluorophores can be used to take advantage of near infrared window of biological tissues - increased transparency of tissues in this spectral region allows to carry out in vivo imaging.

This reagent can be utilized to produce Cyanine7-labeled biomolecules for subsequent use in various in vivo research, and drug design related experiments.

The structure of Cyanine7 features rigidized design of central polymethyne chain. This molecular reinforcement allows to increase quantum yield by 20% compared with parent structure, increasing fluorescence brightness.

This reagent requires organic co-solvent for the labeling (please see Recommended Protocols section below). Water-soluble Cyanine7 NHS ester is also available, and recommended for protein NIR labeling.

Cy7 absorbance and emission spectra

Cy7 absorbance and emission spectra

Customers also purchased with this product

Sulfo-Cyanine5.5 NHS ester

Water soluble, sulfonated, far-red sulfo-Cyanine5.5 dye in the form of NHS ester.

Sulfo-Cyanine7 azide

Water-soluble NIR fluorescent dye azide for Click chemistry

BDP 630/650 alkyne

Alkyne dye for copper catalyzed Click chemistry, containing borondipyrromethene fluorophore BDP 630/650 for red channel.

General properties

Appearance: dark green solid
Molecular weight: 733.64
CAS number: 1432019-64-1
Molecular formula: C41H48N3BF4O4
IUPAC name: 1‐{6‐[(2,5‐dioxopyrrolidin‐1‐yl)oxy]‐6‐oxohexyl}‐ 3,3‐dimethyl‐2‐[(E)‐2‐[(3E)‐3‐{2‐[(2E)‐1,3,3‐ trimethyl‐2,3‐dihydro‐1H‐indol‐2‐ ylidene]ethylidene}cyclohex‐1‐en‐1‐yl]ethenyl]‐3H‐ indol‐1‐ium tetrafluoroborate
Solubility: soluble in organic solvents (DMSO, DMF, dichloromethane), low solubility in water
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

Excitation maximum, nm: 750
ε, L⋅mol−1⋅cm−1: 199000
Emission maximum, nm: 773
Fluorescence quantum yield: 0.3
CF260: 0.022
CF280: 0.029

Product citations

  1. Bonnard, T.; Jayapadman, A.; Putri, J.A.; Cui, J.; Ju, Y.; Carmichael, C.; Angelovich, T.A.; Cody, S.H.; French, S.; Pascaud, K.; Pearce, H.A.; Jagdale, S.; Caruso, F.; Hagemeyer, C.E. Low-Fouling and Biodegradable Protein-Based Particles for Thrombus Imaging. ACS Nano, in press. doi: 10.1021/acsnano.8b02588
  2. Moroz, P.; Jin, Z.; Sugiyama, Y.; Lara, D'A.; Razgoniaeva, N.; Yang, M.; Kholmicheva, N.; Khon, D.; Mattoussi, H.; Zamkov, M. The Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler. ACS Nano, 2018, 12(6), 5657–5665. doi: 10.1021/acsnano.8b01451
  3. Gusliakova, O.; Atochina-Vasserman, E.N.; Sindeeva, O.; Sindeev, S.; Pinyaev, S.; Pyataev, N.; Revin, V.; Sukhorukov, G.B.; Gorin, D.; Gow, A.J. Use of Submicron Vaterite Particles Serves as an Effective Delivery Vehicle to the Respiratory Portion of the Lung. Frontiers in Pharmacology, 2018, 9, 559. doi: 10.3389/fphar.2018.00559
  4. Ashwanikumar, N.; Plaut, J.S.; Mostofian, B.; Patel, S.; Kwak, P.; Sun, C.; McPhail, K.; Zuckerman, D.M.; Esener, S.C.; Sahay, G. Supramolecular self assembly of nanodrill-like structures for intracellular delivery. Journal of Controlled Release, 2018, 282, 76–89. doi: 10.1016/j.jconrel.2018.02.041
Show more (38)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.