Sulfo-Cyanine7 NHS ester

Cat. # Quantity Price Lead time
15320 1 mg 110.00$ in stock
25320 5 mg 290.00$ in stock
45320 25 mg 690.00$ in stock
55320 50 mg 1270.00$ in stock
65320 100 mg 1990.00$ in stock

Water soluble near infrared dye sulfo-Cyanine7, an amine-reactive succinimide ester.

Sulfo-Cyanine7 is an improved analog of Cy7® fluorophore with quantum yield improved by 20%, and higher photostability. This fluorescent dye is especially useful for NIR imaging.

Near infrared fluorescent imaging takes advantage of transparency of biological tissues at particular range of wavelengths. The method is non-destructive, and allows to monitor distribution of various labeled molecules in live organisms.

Sulfo-Cyanine7 NHS ester reagent allows to prepare sulfo-Cyanine7-labeled biomolecules, such as proteins, with ease. Dye labeled molecules can be subsequently used for various research and drug design related experiments.

This reagent has high water solubility, and is especially useful for the labeling of delicate proteins, and proteins prone to denaturation. Non-sulfonated Cyanine7 NHS ester soluble in organic phase is also available.

Sulfo-Cyanine7 absorbance and emission spectra

Sulfo-Cyanine7 absorbance and emission spectra

Customers also purchased with this product

Biotin azide

Biotin azide is a reagent for click chemistry labeling with biotin, a well-known affinity probe.

Sulfo-Cyanine7 carboxylic acid

Sulfo-Cy7 carboxylic acid is a non-reactive fluorescent dye which can be used as a NIR (near infrared) marker.

Cyanine3 NHS ester

Amine-reactive Cyanine3 dye NHS ester.

General properties

Appearance: dark green powder
Molecular weight: 827.94
Molecular formula: C41H46N3NaO10S2
Solubility: good in water, DMF, DMSO
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

Excitation maximum, nm: 750
ε, L⋅mol−1⋅cm−1: 240600
Emission maximum, nm: 773
CF260: 0.04
CF280: 0.04

Product citations

  1. Nakhaei, E.; Kim, C.W.; Funamoto, D.; Sato, H.; Nakamura, Y.; Kishimura, A.; Mori, T.; Katayama, Y. Design of a ligand for cancer imaging with long blood circulation and an enhanced accumulation ability in tumors. MedChemComm, 2017, 8(6), 1190–1195. doi: 10.1039/c7md00102a
  2. Iyisan, B.; Kluge, J.; Formanek, P.; Voit, B.; Appelhans, D. Multifunctional and Dual-Responsive Polymersomes as Robust Nanocontainers: Design, Formation by Sequential Post-Conjugations, and pH-Controlled Drug Release. Chemistry of Materials, 2016, 28(5), 1513–1525. doi: 10.1021/acs.chemmater.5b05016
  3. Saita, M.; Kaneko, J.; Sato, T.; Takahashi, S.; Takahashi, S.W.; Kawamata, R.; Sakurai, T.; Lee, M.-C.; Hamada, N.; Kimoto, K.; Nagasaki, Y. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption. Biomaterials, 2016, 76, 292–301. doi: 10.1016/j.biomaterials.2015.10.077
  4. Subedi, M.; Minn, I.; Chen, J.; Kim, Y.; Ok, K.; Jung, Y.W.; Pomper, M.G.; Byun, Y. Design, synthesis and biological evaluation of PSMA/hepsin-targeted heterobivalent ligands. European Journal of Medicinal Chemistry, 2016, 118, 208–218. doi: 10.1016/j.ejmech.2016.04.033
  5. Cilliers, C.; Liao, J.; Atangcho, L.; Thurber, G.M. Residualization Rates of Near-Infrared Dyes for the Rational Design of Molecular Imaging Agents. Molecular Imaging and Biology, 2015, 17(6), 757–762. doi: 10.1007/s11307-015-0851-7
  6. Terekhov, S., Smirnov, I.; Bobik, T.; Shamborant, O.; Zenkova, M.; Chernolovskaya, E.; Gladkikh, D.; Murashev, A.; Dyachenko, I.; Palikov, V.; Palikova, Y.; Knorre, V.; Belogurov Jr, A.; Ponomarenko, N.; Blackburn, G.M.; Masson, P.; Gabibov, A. A novel expression cassette delivers efficient production of exclusively tetrameric human butyrylcholinesterase with improved pharmacokinetics for protection against organophosphate poisoning. Biochimie, 2015, 118, 51–59. doi: 10.1016/j.biochi.2015.07.028
  7. Mahoney, D.; Owens, E.A.; Fan, C.; Hsiang, J.-C.; Henary, M.; Dickson, R.M. Tailoring Cyanine Dark States for Improved Optically Modulated Fluorescence Recovery. The Journal of Physical Chemistry B, 2015, 119(13), 4637–4643. doi: 10.1021/acs.jpcb.5b00777
  8. Zhang, X.-N.; Zhang, C.-G.; Zhu, Q.-L.; Zhou, Y.; Liu, Y.; Chen, W.-L.; Yang, S.-D. Zhou, X.-F. Zhu, A.-J.; Zhang, X.-N.; Jin, Y. N-Succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. International Journal of Nanomedicine, 2014, 9, 2919–2932. doi: 10.2147/ijn.s59799
  9. Terekhov, S.S.; Smirnov, I.V.; Shamborant, O.G.; Zenkova, M.A.; Chernolovskaya, E.L.; Gladkikh, D.V.; Murashev, A.N.; Dyachenko, I.A.; Knorre, V.D.; Belogurov, A.A.; Ponomarenko, N.A.; Deyev, S.M.; Vlasov, V.V.; Gabibov, A.G. Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo. Acta Naturae, 2014, 6(4), 54–59
  10. Ayala-Orozco, C.; Liu, J.G.; Knight, M.W.; Wang, Y.; Day, J.K.; Nordlander, P.; Halas, N.J. Fluorescence Enhancement of Molecules Inside a Gold Nanomatryoshka. Nano Letters, 2014, 14(5), 2926-2933. doi: 10.1021/nl501027j
Show more (6)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.