Sulfo-Cyanine5 NHS ester

Cat. # Quantity Price Lead time
13320 1 mg $110.00 in stock
23320 5 mg $290.00 in stock
43320 25 mg $690.00 in stock
53320 50 mg $1270.00 in stock
63320 100 mg $1990.00 in stock

Water soluble Cyanine 5 succinimidyl ester (SE), an equivalent of Cy5® NHS ester, for the labeling of various amine-containing molecules in aqueous phase without use of any organic co-solvent. This product is therefore particularly useful for the labeling of proteins which denature in the presence of organic co-solvents, as well as for proteins with low solubility.

Sulfo-Cyanine 5 is an analog of Cy5®, one of the most popular fluorophores which is compatible with various equipment such as plate readers, microscopes, and imagers.

This dye is highly hydrophilic and water-soluble. A non-sulfonated analog is also available.

Can be used as a replacement for Cy5®, Alexa Fluor 647, DyLight 649 for all applications.

Sulfo-Cyanine 5 absorbance and emission spectra

Sulfo-Cyanine 5 absorbance and emission spectra

Customers also purchased with this product

Sulfo-Cyanine7 azide

Water-soluble NIR fluorescent dye azide for Click chemistry

DBCO NHS ester

Azodibenzocyclooctyne (DBCO, ADIBO) reagent for strain promoted copper free Click chemistry (spAAC). The reagent contains an NHS ester function for the attachment of the cyclooctyne to various molecules.

Cyanine5 DBCO

Cyanine5 dye with dibenzocyclooctyne (DBCO) functional group for copper free Click chemistry.

General properties

Appearance: dark blue powder
Molecular weight: 777.95
Molecular formula: C36H40N3KO10S2
Solubility: very good in water, good in DMF and DMSO
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

Excitation maximum, nm: 646
ε, L⋅mol−1⋅cm−1: 271000
Emission maximum, nm: 662
Fluorescence quantum yield: 0.28
CF260: 0.04
CF280: 0.04

Product citations

  1. Schneider, J.R.; Carias, A.M.; Bastian, A.R.; Cianci, G.C.; Kiser, P.F.; Veazey, R.S.; Hope, T.J. Long-term direct visualization of passively transferred fluorophore-conjugated antibodies. Journal of Immunological Methods, 2017, 450, 66–72. doi: 10.1016/j.jim.2017.07.009
  2. Pettersson, J.R.; Lanni, F.; Rule, G.S. Dual lifetimes for complexes between Glutathione-S-transferase (hGSTA1-1) and product-like ligands detected by single-molecule fluorescence imaging. Biochemistry, 2017, 56(31), 4073–4083. doi: 10.1021/acs.biochem.7b00030
  3. Barnett, D.; Liu, Y.; Partyka, K.; Huang, Y.; Tang, H.; Hostetter, G.; Brand, R.E.; Singhi, A.D.; Drake, R.R.; Haab, B.B. The CA19-9 and Sialyl-TRA Antigens Define Separate Subpopulations of Pancreatic Cancer Cells. Scientific Reports, 2017, 7, 4020. doi: 10.1038/s41598-017-04164-z
  4. George, J.T.; Srivatsan, S.G. Vinyluridine as a Versatile Chemoselective Handle for the Post-transcriptional Chemical Functionalization of RNA. Bioconjugate Chemistry, 2017, 28(5), 1529–1536. doi: 10.1021/acs.bioconjchem.7b00169
  5. Goto, A.; Yen, H.-C.; Anraku, Y.; Fukushima, S.; Lai, P.-S.; Kato, M.; Kishimura, A.; Kataoka, K. Facile Preparation of Delivery Platform of Water-Soluble Low-Molecular-Weight Drugs Based on Polyion Complex Vesicle (PICsome) Encapsulating Mesoporous Silica Nanoparticle. ACS Biomaterials Science & Engineering, 2017, 3(5), 807–815. doi: 10.1021/acsbiomaterials.6b00562
  6. Wong, A.S.M.; Czuba, E.; Chen, M.Z.; Yuen, D.; Cupic, K.I.; Yang, S.; Hodgetts, R.Y.; Selby, L.I.; Johnston, A.P.R.; Such, G.K. pH-Responsive Transferrin-pHlexi Particles Capable of Targeting Cells in Vitro. ACS Macro Letters, 2017, 6, 315–320. doi: 10.1021/acsmacrolett.7b00044
  7. Terekhov, S.S.; Smirnov, I.V.; Stepanova, A.V.; Bobik, T.V.; Mokrushina, Y.A.; Ponomarenko, N.A.; Belogurov, A.A.; Rubtsova, M.P.; Kartseva, O.V.; Gomzikova, M.O.; Moskovtsev, A.A.; Bukatin, A.S.; Dubina, M.V.; Kostryukova, E.S.; Babenko, V.V.; Vakhitova, M.T.; Manolov, A.I.; Malakhova, M.V.; Kornienko, M.A.; Tyakht, A.V.; Vanyushkina, A.A.; Ilina, E.N.; Masson, P.; Gabibov, A.g.; Altman, S. Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proceedings of the National Academy of Sciences of the U.S.A., 2017, 114(10), 2550–2555. doi: 10.1073/pnas.1621226114
  8. Zhang, X.; MIn, L.; Jia, C. Application of Wavelet Transform Algorithm and Rolling Ball Algorithm in Single Molecule Fluorescence Resonance Energy Transfer Images. Progress in Biochemistry and Biophysics, 2016, 43(10), 997–1003. doi: 10.16476/j.pibb.2016.0218
  9. Ye, R.; Zhu, C.; Song, Y.; Song, J.; Fu, S.; Lu, Q.; Yang, X.; Zhu, M.-J.; Du, D.; Li, H.; Lin, Y. One-pot bioinspired synthesis of all-inclusive protein–protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk. Nanoscale, 2016, 8(45), 18980–18986. doi: 10.1039/c6nr06870g
  10. Mattheolabakis, G.; Ling, D.; Ahmad, G.; Amiji, M. Enhanced Anti-Tumor Efficacy of Lipid-Modified Platinum Derivatives in Combination with Survivin Silencing siRNA in Resistant Non-Small Cell Lung Cancer. Pharmaceutical Research, 2016, 33(12), 2943–2953. doi: 10.1007/s11095-016-2016-z
  11. Machulkin, A.E.; Garanina, A.S.; Zhironkina, O.A.; Beloglazkina, E.K.; Zyk, N.V.; Savchenko, A.G.; Kotelyanskii, V.E.; Mazhuga, A.G. Nanohybride Materials Based on Magnetite-Gold Nanoparticles for Diagnostics of Prostate Cancer: Synthesis and In Vitro Testing. Bulletin of Experimental Biology and Medicine, 2016, 161(5), 706–710. doi: 10.1007/s10517-016-3490-3
  12. Li, Hong-Jun and Du, Jin-Zhi and Liu, Jing and Du, Xiao-Jiao and Shen, Song and Zhu, Yan-Hua and Wang, Xiaoyan and Ye, Xiaodong and Nie, Shuming and Wang, Jun. Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. ACS Nano, 2016, 10(7), 6753–6761. doi: 10.1021/acsnano.6b02326
  13. Wang, H.; Tang, L.; Liu, Y.; Dobrucka, I.T.; Dobrucki, L.W.; Yin, L.; Cheng, J. In Vivo Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates. Theranostics, 2016, 6(9), 1467–1476. doi: 10.7150/thno.16003
  14. Soodgupta, D.; Zhou, H.; Beaino, W.; Lu, L.; Rettig, M.; Snee, M.; Skeath, J.; DiPersio, J.F.; Akers, W.J.; Laforest, R.; Anderson, C.J.; Tomasson, M.H.; Shokeen, M. Ex Vivo and In Vivo Evaluation of Overexpressed VLA-4 in Multiple Myeloma Using LLP2A Imaging Agents. Journal of Nuclear Medicine, 2016, 57(4), 640–645. doi: 10.2967/jnumed.115.164624
  15. Ye, R.; Zhu, C.; Song, Y.; Lu, Q.; Ge, X.; Yang, X.; Zhu, M.-J.; Du, D.; Li, H.; Lin, Y. Bioinspired Synthesis of All-in-One Organic-Inorganic Hybrid Nanoflowers Combined with a Handheld pH Meter for On-Site Detection of Food Pathogen. Small, 2016, 12(23), 3094–3100. doi: 10.1002/smll.201600273
  16. Bruckman, M.A.; Czapar, A.E.; VanMeter, A.; Randolph, L.N.; Steinmetz, N.F. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 2016, 231, 103–113. doi: 10.1016/j.jconrel.2016.02.045
  17. Sindhwani, S.; Syed, A.M.; Wilhelm, S.; Glancy, D.R.; Chen, Y.Y.; Dobosz, M.; Chan, W.C.W. Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues. ACS Nano, 2016, 10(5), 5468–5478. doi: 10.1021/acsnano.6b01879
  18. Sun, S.; Błażewska, K.M.; Kadina, A.P.; Kashemirov, B.A.; Duan, X.; Triffitt, J.T.; Dunford, J.E.; Russell, R.G.G.; Ebetino, F.H.; Roelofs, A.J.; Coxon, F.P.; Lundy, M.W.; McKenna, C.E. Fluorescent Bisphosphonate and Carboxyphosphonate Probes: A Versatile Imaging Toolkit for Applications in Bone Biology and Biomedicine. Bioconjugate Chemistry, 2016, 27(2), 329–340. doi: 10.1021/acs.bioconjchem.5b00369
  19. Wang, X.; Song, P.; Peng, L.; Tong, A.; Xiang, Y. Aggregation-Induced Emission Luminogen-Embedded Silica Nanoparticles Containing DNA Aptamers for Targeted Cell Imaging. ACS Applied Materials & Interfaces, 2016, 8(1), 609–616. doi: 10.1021/acsami.5b09644
  20. Zhao, Y.; Wei, Z.; Zhao, H.; Jia, J.; Chen, Z.; Zhang, S.; Ouyang, Z.; Ma, X.; Zhang, X. In situ Ion-Transmission Mass Spectrometry for Paper-Based Analytical Devices. Analytical Chemistry, 2016, 88(22), 10805–10810. doi: 10.1021/acs.analchem.6b03272
  21. Lehtivuori, H.; Bhattacharya, S.;Angenent-Mari, N.M.; Satyshur, K.A.; Forest, K.T. Removal of Chromophore-Proximal Polar Atoms Decreases Water Content and Increases Fluorescence in a Near Infrared Phytofluor. Frontiers in Molecular Biosciences, 2015, 2, 65. doi: 10.3389/fmolb.2015.00065
  22. Barlow, N.; Nasser, Y.; Zhao, P.; Sharma, N.; Guerrero-Alba, R.; Edgington-Mitchell, L.E.; Lieu, T.; Veldhuis, N.A.; Poole, D.P.; Conner, J.W.; Lindström, E.; Craig, A.W.; Graham, B.; Vanner, S.J.; Bunnett, N.W. Demonstration of elevated levels of active cathepsin S in dextran sulfate sodium colitis using a new activatable probe. Neurogastroenterology and Motility, 2015, 27(11), 1675–1680. doi: 10.1111/nmo.12656
  23. Singh, S.; Pal, K.; Yadav, J.; Tang, H.; Partyka, K.; Kletter, D.; Hsueh, P.; Ensink, E.; KC, B.; Hostetter, G.; Xu, H.E.; Bern, M.; Smith, D.F.; Mehta, A.S.; Brand, R.; Melcher, K.; Haab, B.B. Upregulation of Glycans Containing 3' Fucose in a Subset of Pancreatic Cancers Uncovered Using Fusion-Tagged Lectins. Journal of Proteome Research, 2015, 14(6), 2594–2605. doi: 10.1021/acs.jproteome.5b00142
  24. Hörner, A.; Hagendorn, T.; Schepers, U.; Bräse, S. Photophysical properties and synthesis of new dye-cyclooctyne conjugates for multicolor and advanced microscopy. Bioconjugate Chemistry, 2015, 26(4), 718–724. doi: 10.1021/acs.bioconjchem.5b00059
  25. Mahoney, D.; Owens, E.A.; Fan, C.; Hsiang, J.-C.; Henary, M.; Dickson, R.M. Tailoring Cyanine Dark States for Improved Optically Modulated Fluorescence Recovery. The Journal of Physical Chemistry B, 2015, 119(13), 4637–4643. doi: 10.1021/acs.jpcb.5b00777
  26. Han, Z.; Zhou, Z.; Shi, X.; Wang, J.; Wu, X.; Sun, D.; Chen, Y.; Zhu, H.; Magi-Galluzzi, C.; Lu, Z.-R. EDB fibronectin specific peptide for prostate cancer targeting. Bioconjugate Chemistry, 2015, 26(5), 830–838. doi: 10.1021/acs.bioconjchem.5b00178
  27. Aldeek, F.; Hawkins, D.; Palomo, V.; Safi, M.; Palui, G.; Dawson, P.E.; Alabugin, I.V.; Mattoussi, H. UV and Sunlight Driven Photoligation of Quantum Dots: Understanding the Photochemical Transformation of the Ligands. Journal of the American Chemical Society, 2015, 137(7), 2704–2714. doi: 10.1021/ja512802x
  28. Wen, A.M.; Infusino, M.; De Luca, A.; Kernan, D.L.; Czapar, A.E.; Strangi, G.; Steinmetz, N.F. Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics. Bioconjugate Chemistry, 2015, 26(1), 51–62. doi: 10.1021/bc500524f
  29. Nakamura, T.; Sugihara, F.; Matsushita, H.; Yoshioka, Y.; Mizukami, S.; Kikuchi, K. Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chemical Science, 2015, 6, 1986–1990. doi: 10.1039/c4sc03549f
  30. Hsueh, P.-Y.; Edman, M.C.; Sun, G.; Shi, P.; Xu, S.; Lin, Y.-a.; Cui, H.; Hamm-Alvarez, S.F.; MacKay, J.A. Tear-mediated delivery of nanoparticles through transcytosis of the lacrimal gland. Journal of Controlled Release, 2015, 208, 2–13. doi: 10.1016/j.jconrel.2014.12.017
  31. Geertsema, H.J.; Duderstadt, K.E.; van Oijen, A.M. Single-molecule observation of prokaryotic DNA replication. Methods in Molecular Biology, 2015, 1300, 219–238. doi: 10.1007/978-1-4939-2596-4_14
  32. Nooney, R.I.; White, A.; O’Mahony, C.; O’Connell, C.; Kelleher, S.M.; Daniels, S.; McDonagh, C. Investigating the colloidal stability of fluorescent silica nanoparticles under isotonic conditions for biomedical applications. Journal of Colloid and Interface Science, 2015, 456, 50–58. doi: 10.1016/j.jcis.2015.05.051
  33. Santangelo, M.F.; Sciuto, E.L.; Busacca, A.C.; Petralia, S.; Conoci, S.; Libertino, S. SiPM as miniaturised optical biosensor for DNA-microarray applications. Sensing and Bio-Sensing Research, 2015, 6, 95–98. doi: 10.1016/j.sbsr.2015.08.003
  34. Sciuto, E.L.; Santangelo, M.F.; Villaggio, G.; Sinatra, F.; Bongiorno, C.; Nicotra, G.; Libertino, S. Photo-physical characterization of fluorophore Ru(bpy)32+ for optical biosensing applications. Sensing and Bio-Sensing Research, 2015, 6, 67–71. doi: 10.1016/j.sbsr.2015.09.003
  35. Hickey, S. F.; Hammond, M.C. Structure-Guided Design of Fluorescent S-Adenosylmethionine Analogs for a High-Throughput Screen to Target SAM-I Riboswitch RNAs. Chemistry & Biology, 2014, 21(3), 345–356. doi: 10.1016/j.chembiol.2014.01.004
  36. Terekhov, S.S.; Smirnov, I.V.; Shamborant, O.G.; Zenkova, M.A.; Chernolovskaya, E.L.; Gladkikh, D.V.; Murashev, A.N.; Dyachenko, I.A.; Knorre, V.D.; Belogurov, A.A.; Ponomarenko, N.A.; Deyev, S.M.; Vlasov, V.V.; Gabibov, A.G. Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo. Acta Naturae, 2014, 6(4), 54–59
  37. Ayala-Orozco, C.; Liu, J.G.; Knight, M.W.; Wang, Y.; Day, J.K.; Nordlander, P.; Halas, N.J. Fluorescence Enhancement of Molecules Inside a Gold Nanomatryoshka. Nano Letters, 2014, 14(5), 2926-2933. doi: 10.1021/nl501027j
  38. Brand, C.; Abdel-Atti, D.; Zhang, Y.; Carlin, S.; Clardy, S.M.; Keliher, E.J.; Weber, W.A.; Lewis, J.S.; Reiner, T. In Vivo Imaging of GLP-1R with a Targeted Bimodal PET/Fluorescence Imaging Agent. Bioconjugate Chemistry, 2014, 25(7), 1323-1330. doi: 10.1021/bc500178d
  39. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  40. Li, L.-L.; Xu, J.-H.; Qi, G.-B.; Zhao, X.; Yu, F.; Wang, H. Core-Shell Supramolecular Gelatin Nanoparticles for Adaptive and "On-Demand" Antibiotic Delivery. ACS Nano, 2014, 8(5), 4975-4983. doi: 10.1021/nn501040h
  41. Viehweger, K.; Barbaro, L.; García, K.P.; Joshi, T.; Geipel, G.; Steinbach, J.; Stephan, H.; Spiccia, L.; Graham, B. EGF Receptor-Targeting Peptide Conjugate Incorporating a Near-IR Fluorescent Dye and a Novel 1,4,7-Triazacyclononane-Based 64Cu(II) Chelator Assembled via Click Chemistry. Bioconjugate Chemistry, 2014, 25(5), 1011-1022. doi: 10.1021/bc5001388
  42. Zhou, Z.; Wu, X.; Kresak, A.; Griswold, M.; Lu, Z.-R. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials, 2013, 34(31), 7683-7693. doi: 10.1016/j.biomaterials.2013.06.057
  43. Zou, C.; Loka, R.S.; Zhang, Y.; Cairo, C.W. Glycoform Remodeling Generates a Synthetic T Cell Phenotype. Bioconjugate Chemistry, 2013, 24(6), 907-914. doi: 10.1021/bc300599w
Show more (39)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.