Azidobutyric acid NHS ester

Cat. # Quantity Price Lead time
53720 50 mg $60.00 in stock
63720 100 mg $95.00 5 days
73720 1 g please inquire in stock
83720 5 g please inquire in stock

Convert your proteins and peptides into Click Chemistry reactive form with this reagent.

While Click Chemistry involves reaction between terminal alkyne and azide, both azides and alkynes are very uncommon in nature. However, there are reagents to attach these fragments to abundant amino groups which are ubiquitous in the world of biomolecules. This azido-NHS ester is designed for the conversion of proteins, peptides, amino-DNA, and other amines into Click Chemistry reactive azides.

Customers also purchased with this product

Sulfo-Cyanine5 bis-NHS ester

Water soluble amine reactive Cyanine5 dye with two NHS ester groups.

Cyanine3 NHS ester

Amine-reactive Cyanine3 dye NHS ester.

EdU (5-ethynyl-2'-deoxyuridine)

EdU is a nucleoside which is incorporated into replicated DNA by cellular enzymes. After it, DNA contained in the cells can be developed by Click chemistry reaction with fluorescent dye azides to reveal cell proliferation.

General properties

Appearance: colorless solid
Mass spec M+ increment: 111.0
Molecular weight: 226.19
CAS number: 943858-70-6
Molecular formula: C8H10N4O4
IUPAC name: Butanoic acid, 4-​azido-​, 2,​5-​dioxo-​1-​pyrrolidinyl ester
Solubility: soluble in organic solvents (DMF, DMSO)
Quality control: NMR 1H (95%), HPLC
Storage conditions: Storage: 12 months after receival at -20°C. Transportation: at room temperature for up to 3 weeks. Desiccate.
MSDS: Download
Product specifications

Product citations

  1. Hou, W.; Li, Y.; Kang, W.; Wang, X.; Wu, X.; Wang, S.; Liu, F. Real-time analysis of quantum dot labeled single porcine epidemic diarrhea virus moving along the microtubules using single particle tracking. Scientific Reports, 2019, 9, 1307. doi: 10.1038/s41598-018-37789-9
  2. Kuznetsov, A.E.; Komarova, N.V.; Kuznetsov, E.V.; Andrianova, M.S.; Grudtsov, V.P.; Rybachek, E.N.; Puchnin, K.V.; Ryazantsev, D.V.; Saurov, A.N. Integration of a field effect transistor-based aptasensor under a hydrophobic membrane for bioelectronic nose applications. Biosensors and Bioelectronics, 2019, 129, 29–35. doi: 10.1016/j.bios.2019.01.013
  3. Kumar, P.; Kuhlmann, F.M.; Chakroborty, S.; Bourgeois, A.L.; Foulke-Abel, J.; Tumala, B.; Vickers, T.J.; Sack, D.A.; DeNearing, B.; Harro, C.D.; Wright, W.S.; Gildersleeve, J.C.; Ciorba, M.A.; Santhanam, S.; Porter, C.K.; Gutierrez, R.L.; Prouty, M.G.; Riddle, M.S.; Polino, A.; Sheikh, A.; Donowitz, M.; Fleckenstein, J.M. Enterotoxigenic Escherichia coli blood group A interactions intensify diarrheal severity. The Journal of Clinical Investigation, 2018, 128(8), 3298–3311. doi: 10.1172/JCI97659
  4. Andrianova, M.; Komarova, N.; Grudtsov, V.; Kuznetsov, E.; Kuznetsov, A. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase. Sensors, 2018, 18, 49. doi: 10.3390/s18010049
Show more (4)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.