Cyanine5 NHS ester

Cat. # Quantity Price Lead time
13020 1 mg $110.00 in stock
23020 5 mg $210.00 in stock
43020 25 mg $410.00 in stock
53020 50 mg $695.00 in stock
63020 100 mg $1190.00 in stock

During the last years, Cyanine5 (an analog of Cy5®) has become an incredibly popular label in life science research and diagnostics. The fluorophore has its emission maximum in the red region, where many CCD detectors exhibit maximum sensitivity, and biological objects show low background. The dye color is very intense, therefore quantities as small as 1 nmol can be detected in gel electrophoresis by naked eye.

This Cyanine5 NHS ester (analog to Cy5® NHS ester) is a reactive dye for the labeling of amino-groups in peptides, proteins, and oligonucleotides. This dye requires a small amount of organic co-solvent (such as DMF or DMSO) to be used in labeling reactions (please see our recommended protocol for more details). This reagent is ideal for very cost-efficient labeling of soluble proteins as well as all kinds of peptides and oligonucleotides. This reagent also works well in organic solvents for small molecule labeling. For more sophisticated targets such as easily degradable proteins, when the use of DMF or DMSO is undesirable, consider using water-soluble sulfo-Cyanine 5 NHS ester which does not require any co-solvent, and features very similar fluorescent properties.

Cyanine5 fluorophore is compatible with various instrumentation including many fluorescent microscopes, imagers, scanners, and fluorescence readers. A number of various Cyanine5 analogs exist - Cyanine5 NHS ester can replace activated esters of Cy5® and DyLight 649.

Cy5 excitation and emission spectra

Cy5 excitation and emission spectra

Customers also purchased with this product

HEX phosphoramidite, 6-isomer

HEX phosphoramidite for synthesis of 5’-labeled oligonucleotides.
Add this product to your cart and
get free express delivery

THPTA ligand

THPTA is a water soluble ligand for Cu(I) catalyzed Click chemistry. The ligand stabilizes copper in its Cu(I) oxidation state. Due to high aqueous solubility, reactions with this ligand do not require an organic co-solvent.

Sulfo-Cyanine7 amine

Water-soluble NIR dye amine, sulfonated derivative of Cyanine7 dye, for the modification via enzymatical transamination.

General properties

Appearance: dark blue solid
Molecular weight: 667.54
CAS number: 1263093-76-0
Molecular formula: C36H42N3BF4O4
IUPAC name: 3H-​Indolium, 2-​[5-​(1,​3-​dihydro-​1,​3,​3-​trimethyl-​2H-​indol-​2-​ylidene)​-​1,​3-​pentadien-​1-​yl]​-​1-​[6-​[(2,​5-​dioxo-​1-​pyrrolidinyl)​oxy]​-​6-​oxohexyl]​-​3,​3-​dimethyl-​, tetrafluoroborate
Solubility: very poorly soluble in water (0.19 mM = 127 mg/L), good in polar (DMSO, DMF) and chlorinated (DCM, chloroform) organic solvents
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download
Product specifications

Spectral properties

Excitation/absorption maximum, nm: 646
ε, L⋅mol−1⋅cm−1: 250000
Emission maximum, nm: 662
Fluorescence quantum yield: 0.2
CF260: 0.03
CF280: 0.04

Product citations

  1. Gruenke, P.R.; Aneja, R.; Welbourn, S.; Ukah, O.B.; Sarafianos, S.G.; Burke, D.H.; Lange, M.J. Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Research, in press. doi: 10.1093/nar/gkab1293
  2. Janiszewski, T.; Kołt, S.; Kaiserman, D.; Snipas, S.; Li, S.; Kulbacka, J.; Saczko, J.; Bovenschen, N.; Salvesen, G.; Drąg, M.; Bird, P.I.; Kasperkiewicz, P. Noninvasive optical detection of Granzyme B from natural killer cells using enzyme-activated fluorogenic probes. bioRxiv, preprint. doi: 10.1101/2019.12.16.875070
  3. Poreba, M.; Groborz, K.; Rut, W.; Pore, M.; Snipas, S.J.; Vizovisek, M.; Turk, B.; Kuhn, P.; Drag, M.; Salvesen, G.S. The Activome: multiplexed probing of activity of proteolytic enzymes using mass cytometry-compatible activity-based probes (TOF-probes). bioRxiv, preprint. doi: 10.1101/775627
  4. Vakhrushev, A.V.; Demin, A.M.; Krasnov, V.P. Synthesis of fluorescent GRGD peptide derivatives. AIP Conference Proceedings, 2022, 2390(1), 020083. doi: 10.1063/5.0069274
Show more (216)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.