Cyanine5 NHS ester

Cat. # Quantity Price Lead time
13020 1 mg $110.00 in stock
23020 5 mg $210.00 in stock
43020 25 mg $410.00 in stock
53020 50 mg $695.00 in stock
63020 100 mg $1190.00 in stock

During the last years, Cyanine5 (an analog of Cy5®) has become an incredibly popular label in life science research and diagnostics. The fluorophore has its emission maximum in the red region, where many CCD detectors exhibit maximum sensitivity, and biological objects show low background. The dye color is very intense, therefore quantities as small as 1 nmol can be detected in gel electrophoresis by naked eye.

This Cyanine5 NHS ester (analog to Cy5® NHS ester) is a reactive dye for the labeling of amino-groups in peptides, proteins, and oligonucleotides. This dye requires a small amount of organic co-solvent (such as DMF or DMSO) to be used in labeling reactions (please see our recommended protocol for more details). This reagent is ideal for very cost-efficient labeling of soluble proteins as well as all kinds of peptides and oligonucleotides. This reagent also works well in organic solvents for small molecule labeling. For more sophisticated targets such as easily degradable proteins, when the use of DMF or DMSO is undesirable, consider using water-soluble sulfo-Cyanine 5 NHS ester which does not require any co-solvent, and features very similar fluorescent properties.

Cyanine5 fluorophore is compatible with various instrumentation including many fluorescent microscopes, imagers, scanners, and fluorescence readers. A number of various Cyanine5 analogs exist - Cyanine5 NHS ester can replace activated esters of Cy5®, Alexa Fluor 647, and DyLight 649.

Cy5 excitation and emission spectra

Cy5 excitation and emission spectra

Customers also purchased with this product

Sulfo-Cyanine7.5 dicarboxylic acid

Sulfo-Cyanine7.5 dicarboxylic acid is a bifunctional cyanine dye with two carboxylic acid (COOH) groups. The molecule can be used to construct cross conjugates containing a near infrared emitting fluorophore.
Add this product to your cart and
get free express delivery

BDP TR alkyne

BDP TR is a fluorophore for Texas Red (ROX) channel. This borondipyrromethene dye is very bright, and resistant to oxidation.

Sulfo-Cyanine5.5 azide

Sulfo-Cyanine5.5 azide is a derivative of water soluble far red emitting fluorescent cyanine dye. The azide group can be conjugated by either copper-catalyzed or copper free Click chemistry. The reagent possesses high aqueous solubility and hydrophilicity, and recommended for the labeling of biomolecules in aqueous environment.

General properties

Appearance: dark blue solid
Molecular weight: 667.54
CAS number: 1263093-76-0 (tetrafluoroborate), 1032678-42-4 (chloride), 350686-88-3 (without anion)
Molecular formula: C36H42N3BF4O4
IUPAC name: 3H-​Indolium, 2-​[5-​(1,​3-​dihydro-​1,​3,​3-​trimethyl-​2H-​indol-​2-​ylidene)​-​1,​3-​pentadien-​1-​yl]​-​1-​[6-​[(2,​5-​dioxo-​1-​pyrrolidinyl)​oxy]​-​6-​oxohexyl]​-​3,​3-​dimethyl-​, tetrafluoroborate
Solubility: very poorly soluble in water (0.19 mM = 127 mg/L), good in polar (DMSO, DMF) and chlorinated (DCM, chloroform) organic solvents
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download
Product specifications

Spectral properties

Excitation maximum, nm: 646
ε, L⋅mol−1⋅cm−1: 250000
Emission maximum, nm: 662
Fluorescence quantum yield: 0.2
CF260: 0.03
CF280: 0.04

Product citations

  1. Nishimura, T.; Mitsunaga, M.; Ito, K.; Kobayashi, H.; Saruta, M. Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT. Gastric Cancer, in press. doi: 10.1007/s10120-019-00988-y
  2. Gaikwad, H.; Wang, G.; Smith, W.J.; Alexander, K.L.; D'Alessandro, A.; Zhang, W.; Purev, E.; Simberg, D. Clickable Methyltetrazine-Indocarbocyanine Lipids: A Multicolor Tool Kit for Efficient Modifications of Cell Membranes. Bioconjugate Chemistry, in press. doi: 10.1021/acs.bioconjchem.9b00202
  3. Li, Z.; Lin, J.; Sulchek, T.; Cruz, M.A.; Wu, J.; Dong, J.-F.; Zhu, C. Domain specific mechanical modulation of VWF-ADAMTS13 interaction. Molecular Biology of the Cell, 2019, 30(16), 1920–1929. doi: 10.1091/mbc.E19-01-0021
  4. Huang, H.; Zhou, M.; Ruan, L.; Wang, D.; Lu, H.; Zhang, J.; Chen, J.; Hu, Y.; Chai, Z. AMPK mediates the neurotoxicity of iron oxide nanoparticles retained in mitochondria or lysosomes. Metallomics, 2019, 11(7), 1200–1206. doi: 10.1039/c9mt00103d
Show more (150)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.