Cyanine7.5 NHS ester

Cat. # Quantity Price Lead time
16020 1 mg $110.00 in stock
26020 5 mg $210.00 in stock
46020 25 mg $410.00 5 days
56020 50 mg $695.00 in stock
66020 100 mg $1190.00 in stock

Cyanine7.5 is a NIR dye with very long-wave emission. This product is amine-reactive derivative of this fluorophore.

Near infrared radiation readily penetrates tissues and can be used for imaging applications in vivo.

This product can be used for the labeling of various biomolecules containing amine groups, such as proteins and peptides, to track their distribution in organism in vivo by NIR imaging.

Increased rigidity of central polymethyne moiety allows to increase quantum yield by 20% compared to parent structure of Cy7.5® NHS.

Cy7.5 absorbance and emission spectra

Customers also purchased with this product

Pyrenebutyric acid NHS ester

Pyrene NHS ester for the labeling of biomolecules with pyrene residue. Pyrene is a fluorescent proximity probe which forms excimers, and it is also an anchor group for graphite immobilization.

Cyanine5 NHS ester

Amine-reactive Cyanine5 activated ester for the labeling of proteins, peptides, and other molecules.

Azidobutyric acid NHS ester

Activated ester for azido labeling of peptides and proteins.

General properties

Appearance: green powder
Molecular weight: 782.41
Molecular formula: C49H52ClN3O4
Solubility: soluble in organic solvents (DMSO, DMF, dichloromethane), low solubility in water
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

Excitation maximum, nm: 788
ε, L⋅mol−1⋅cm−1: 223000
Emission maximum, nm: 808

Product citations

  1. Lin, S.; Shah, A.; Hernández-Gil, J.; Stanziola, A.; Harriss, B.I.; Matsunaga, T.O.; Long, N.; Bamber, J.; Tang, M.-X. Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging. Photoacoustics, in press. doi: 10.1016/j.pacs.2017.04.001
  2. S Lin, A Shah, J Hernández-Gil, A Stanziola, BI Harriss et al. Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging. Photoacoustics. doi: 10.1016/j.pacs.2017.04.001
  3. Sivak, L.; Subr, V.; Tomala, J.; Rihova, B.; Strohalm, J.; Etrych, T.; Kovar, M. Overcoming multidrug resistance via simultaneous delivery of cytostatic drug and P-glycoprotein inhibitor to cancer cells by HPMA copolymer conjugate. Biomaterials, 2017, 115, 65–80. doi: 10.1016/j.biomaterials.2016.11.013
  4. Cheng, J.; Feng, S.; Han, S.; Zhang, X.; Chen, Y.; Zhou, X.; Wang, R.; Li, X.; Hu, H.; Zhang, J. Facile Assembly of Cost-Effective and Locally Applicable or Injectable Nanohemostats for Hemorrhage Control. ACS Nano, 2016, 10(11), 9957&ndash9973. doi: 10.1021/acsnano.6b04124
  5. Zhang, Q.; Tao, H.; Lin, Y.; Hu, Y.; An, H.; Zhang, D.; Feng, S.; Hu, H.; Wang, R.; Li, X.; Zhang, J. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials, 2016, 105, 206–221. doi: 10.1016/j.biomaterials.2016.08.010
  6. Feng, S.; Hu, Y.; Peng, S.; Han, S.; Tao, H.; Zhang, Q.; Xu, X.; Zhang, J.; Hu, H. Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials, 2016, 105, 167–184. doi: 10.1016/j.biomaterials.2016.08.003
  7. Dou, Y.; Guo, J.; Chen, Y.; Han, S.; Xu, X.; Shi, Q.; Jia, Y.; Liu, Y.; Deng, Y.; Wang, R.; Li, X.; Zhang, J. Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice. Journal of Controlled Release, 2016, 235, 48–62. doi: 10.1016/j.jconrel.2016.05.049
  8. Markovic, S.; Belz, J.; Kumar, R.; Cormack, R.A.; Sridhar, S.; Niedre, M. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants. International Journal of Nanomedicine, 2016, 11, 1213–1223. doi: 10.2147/IJN.S93324
  9. Zhang, Z.; Cai, H.; Liu, Z.; Yao, P. Effective Enhancement of Hypoglycemic Effect of Insulin by Liver-targeted Nanoparticles Containing Cholic Acid-modified Chitosan Derivative. Molecular Pharmaceutics, 2016, 13(7), 2433–2442. doi: 10.1021/acs.molpharmaceut.6b00188
  10. Han, F.Y.; Thurecht, K.J.; Lam, A.-L.; Whittaker, A.K.; Smith, M.T. Novel Polymeric Bioerodable Microparticles for Prolonged-Release Intrathecal Delivery of Analgesic Agents for Relief of Intractable Cancer-Related Pain. Journal of Pharmaceutical Sciences, 2015, 104(7), 2334–2344. doi: 10.1002/jps.24497
  11. Duong, H.T.T.; Dong, Z.; Su, L; Boyer, C.; George, J.; Davis, T.P.; Wang, J. The Use of Nanoparticles to Deliver Nitric Oxide to Hepatic Stellate Cells for Treating Liver Fibrosis and Portal Hypertension. Small, 2015, 11(19), 2291–2304. doi: 10.1002/smll.201402870
  12. Chen, K.; Xu, X.; Guo, J.W.; Zhang, X.; Han, S.; Wang, R.; Li, X.; Zhang, J. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry. Biomacromolecules, 2015, 16(11), 3574–3583. doi: 10.1021/acs.biomac.5b01056
  13. Lin, Y.-A.; Cheetham, A.G.; Zhang, P.; Ou, Y.-C.; Li, Y.; Liu, G.; Hermida Merino, D.; Hamley, I.W.; Cui, H. Multi-Walled Nanotubes Formed by Catanionic Mixtures of Drug Amphiphiles. ACS Nano, 2014, 8(12), 12690-12700. doi: 10.1021/nn505688b
  14. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  15. Lu, H.D.; Soranno, D.E.; Rodell, C.B.; Kim, I.L.; Burdick, J.A. Secondary Photocrosslinking of Injectable Shear-Thinning Dock-and-Lock Hydrogels. Advanced Healthcare Materials, 2013, 2(7), 1028-1036. doi: 10.1002/adhm.201200343
  16. Yang, H.; Mao, H.; Wan, Z.; Zhu, A.; Guo, M.; Li, Y.; Li, X.; Wan, J.; Yang, X.; Shuai, X. et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials, 2013, 34(36), 9124-9133. doi: 10.1016/j.biomaterials.2013.08.022
  17. Zhou, K.; Liu, H.; Zhang, S.; Huang, X.; Wang, Y.; Huang, G.; Sumer, B.D.; Gao, J. Multicolored pH-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic pH Stimuli. Journal of the American Chemical Society, 2012, 134(18), 7803-7811. doi: 10.1021/ja300176w
Show more (13)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.
translate