Cyanine5 NHS ester minimal dye

Cat. # Quantity Price Lead time
1C041 5 nmol $85.00 in stock
2C041 10 nmol $140.00 in stock
3C041 25 nmol $210.00 in stock

Cyanine5 minimal dye for protein labeling, an analog of Cy5® minimal dye.

This reagent is specially quantified for the use in 2D proteomics. Each package contains specified amount of NHS ester with quantity variation within 10%.

Customers also purchased with this product

FAM alkyne, 6-isomer

Fluorescein dye alkyne for Click Chemistry, pure 6-isomer.

Cyanine3 hydrazide

Cyanine3 hydrazide is a carbonyl-reactive dye for Cy3 channel.

Cyanine7 maleimide

Cyanine7 maleimide is a sulfhydryl-reactive NIR dye.

General properties

Appearance: dark blue solid
Quality control: NMR 1H, HPLC-MS, functional testing
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

Excitation maximum, nm: 645
Emission maximum, nm: 660
CF260: 0.03
CF280: 0.04

Product citations

  1. Shields, K.J.; Wu, C. Differential Adipose Tissue Proteomics. Methods in Molecular Biology. doi: 10.1007/7651_2017_80
  2. Zhao, P.; George, J.V.; Li, B.; Amini, N.; Paluh, J.; Wang, J. Clickable Multifunctional Dumbbell Particles for In Situ Multiplex Single-Cell Cytokine Detection. ACS Applied Materials & Interfaces, 2017, 9(38), 32482–32488. doi: 10.1021/acsami.7b08338
  3. Haimi, P.; Vinskiene, J.; Stepulaitiene, I.; Baniulis, D.; Stanienė, G.; Šikšnianienė, J.B.; Rugienius, R. Patterns of low temperature-Induced accumulation of dehydrins in Rosaceae crops — Evidence for post-translational modification in apple. Journal of Plant Physiology, 2017, 218, 175–181. doi: 10.1016/j.jplph.2017.08.008
  4. Merjaneh, M.; Langlois, A.; Larochelle, S.; Cloutier, C.B.; Ricard-Blum, S.; Moulin, V.J. Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts. Angiogenesis, 2017, 20(3), 385–398. doi: 10.1007/s10456-017-9554-9
  5. Sikorskaite-Gudziuniene, S.; Haimi, P.; Gelvonauskiene, D.; Stanys, V. Nuclear proteome analysis of apple cultivar ‘Antonovka’ accessions in response to apple scab (Venturia inaequalis). European Journal of Plant Pathology, 2017, 148(4), 771–784. doi: 10.1007/s10658-016-1131-3
  6. Heller, D.; Helmerhorst, E.J.; Oppenheim, F.G. Saliva and Serum Protein Exchange at the Tooth Enamel Surface. Journal of Dental Research, 2017, 96(4), 437–443. doi: 10.1177/0022034516680771
  7. Bian, Y.; Deng, X.; Yan, X.; Zhou, J.; Yuan, L.; Yan, Y. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Scientific Reports, 2017, 7, 46183. doi: 10.1038/srep46183
  8. Kaux JF, Libertiaux V, Leprince P, Fillet M, Denoel V Wyss C, Lecut C, Gothot A, Le Goff C, Croisier JL, Crielaard JM, Drion P. Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model. The American Journal of Sports Medicine, 2017, 45(6), 1440–1446. doi: 10.1177/0363546517689872
  9. Nemethova, M.; Talian, I.; Danielisova, V.; Tkacikova, S.; Bonova, P.; Bober, P.; Matiasova, M.; Sabo, J.; Burda, J. Delayed bradykinin postconditioning modulates intrinsic neuroprotective enzyme expression in the rat CA1 region after cerebral ischemia: a proteomic study. Metabolic Brain Disease, 2016, 31(6), 1391–1403. doi: 10.1007/s11011-016-9859-1
  10. Boone, C.; Grove, R.; Adamcova, D.; Braga, C.; Adamec, J. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics and bioinformatics. Proteomics, 2016, 16(13), 1889–1903. doi: 10.1002/pmic.201500546
  11. Bertrand, A.; Bipfubusa, M.; Castonguay, Y.; Rocher, S.; Szopinska-Morawska, A.; Papadopoulos, Y.; Renaut, J. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). BMC Plant Biology, 2016, 16, 65. doi: 10.1186/s12870-016-0751-2
  12. Bipfubusa, M.; Rocher, S.; Bertrand, A.; Castonguay, Y.; Renaut, J. Dataset of protein changes induced by cold acclimation in red clover (Trifolium pratense L.) populations recurrently selected for improved freezing tolerance. Data in Brief, 2016, 8, 570–574. doi: 10.1016/j.dib.2016.06.003
  13. Wang, Z.; Zourelias, L.; Wu, C.; Edwards, P.C.; Trombetta, M.; Passineau, M.J. Ultrasound-assisted nonviral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion. Gene Therapy, 2015, 22, 739–749. doi: 10.1038/gt.2015.36
  14. Lu, J.; Zhou, Z.; Zheng, J.; Zhang, Z.; Lu, R.; Liu, H.; Shi, H.; Tu, Z. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation. Toxicology and Applied Pharmacology, 2015, 288(1), 106–113. doi: 10.1016/j.taap.2015.07.020
  15. Printz, B.; Guerriero, G.; Sergeant, K.; Renaut, J.; Lutts, S.; Hausman, J.-F. Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem. Plant Science, 2015, 238, 13–25. doi: 10.1016/j.plantsci.2015.05.014
  16. Ashoub, A.; Baeumlisberger, M.;Neupaertl, M.; Karas, M.; Brüggemann, W. Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Molecular Biology, 2015, 87(4–5), 459–471. doi: 10.1007/s11103-015-0291-4
  17. Feret, R.; Lilley, K.S. Protein Profiling Using Two-Dimensional Difference Gel Electrophoresis (2-D DIGE). Current Protocols in Protein Science, 2014, 22.2.1-22.2.17. doi: 10.1002/0471140864.ps2202s75
  18. Molinari, C.E.; Casadio, Y.S.; Hartmann, B.T.; Livk, A.; Bringans, S.; Arthur, P.G.; Hartmann, P.E. Proteome Mapping of Human Skim Milk Proteins in Term and Preterm Milk. Journal of Proteome Research, 2012, 11(3), 1696-1714. doi: 10.1021/pr2008797
Show more (14)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.