Cyanine3 NHS ester

Cat. # Quantity Price Lead time
11020 1 mg $110.00 in stock
21020 5 mg $210.00 in stock
41020 25 mg $410.00 in stock
51020 50 mg $695.00 5 days
61020 100 mg $1190.00 in stock

Cyanine3 NHS ester is a reactive dye for the labeling of amino-groups in biomolecules, an analog of Cy3® NHS ester. This reagent is ideal for the labeling of soluble proteins, peptides, and oligonucleotides/DNA. For delicate proteins consider using water-soluble sulfo-Cyanine3 NHS ester which does not require use of any co-solvent.

Cyanine3 NHS ester is a replacement for NHS esters of Cy3®, Alexa Fluor 546, and DyLight 549.

Absorption and emission spectra of Cyanine3 fluorophore

Absorption and emission spectra of Cyanine3 fluorophore

Customers also purchased with this product

BDP 630/650 tetrazine

BDP 630/650 is a borondipyrromethene dye for Cyanine5 channel. This is a tetrazine derivative for the coupling with strained cycloalkenes.

Cyanine7.5 carboxylic acid

Cyanine7.5 - unactivated NIR cyanine dye carboxylic acid.
Add this product to your cart and
get free express delivery

Amino-11-dUTP

Amino-11-dUTP is a triphosphate for the modification of DNA.

General properties

Appearance: red powder
Mass spec M+ increment: 474.2
Molecular weight: 641.5
Molecular formula: C34H40N3BF4O4
IUPAC name: 3H-​Indolium, 2-​[3-​(1,​3-​dihydro-​1,​3,​3-​trimethyl-​2H-​indol-​2-​ylidene)​-​1-​propen-​1-​yl]​-​1-​[6-​[(2,​5-​dioxo-​1-​pyrrolidinyl)​oxy]​-​6-​oxohexyl]​-​3,​3-​dimethyl-​, tetrafluoroborate
Solubility: poorly soluble in water (2.3 mM = 1.5 g/L), soluble in organic solvents (DMF, DMSO, dichloromethane)
Quality control: NMR 1H and HPLC-MS (95+%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download
Product specifications

Spectral properties

Excitation maximum, nm: 555
ε, L⋅mol−1⋅cm−1: 150000
Emission maximum, nm: 570
Fluorescence quantum yield: 0.31
CF260: 0.04
CF280: 0.09

Product citations

  1. Chiou, A.E.; Hinckley, J.A.; Khaitan, R:; Varsano, N.; Wang, J.; Malarkey, H.F.; Hernandez, C.J.; Williams, R.M.; Estroff, L.A.; Weiner, S.; Addadi, L.; Wiesner, U.B.; Fischbach, C. Fluorescent Silica Nanoparticles to Label Metastatic Tumor Cells in Mineralized Bone Microenvironments. Small, in press. doi: 10.1002/smll.202001432
  2. Som, M.; Lal, R.; Ruiz-Velasco, V. Lipid-Encapsulated Silica Nanobowls as an Efficient and Versatile DNA Delivery System. Bioconjugate Chemistry, 2020, 31(12), 2697–2711. doi: 10.1021/acs.bioconjchem.0c00493
  3. Li, H.-Y.; Lin, H.-C.; Huang, B.-J.; Lo, A.Z.K.; Saidin, S.; Lai, C.-H. Size Preferences Uptake of Glyco-Silica Nanoparticles to MDA-MB-231 Cell. Langmuir, 2020, 36(38), 11374–11382. doi: 10.1021/acs.langmuir.0c02297
  4. Cassidy, J.; Ellison, C.; Bettinger, J.; Yang, M.; Moroz, P.; Zamkov, M. Enabling Narrow Emission Linewidths in Colloidal Nanocrystals through Coalescence Growth. Chemistry of Materials, 2020, 32(17), 7524–7534. doi: 10.1021/acs.chemmater.0c02874
Show more (82)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.