Cyanine3 NHS ester

Cat. # Quantity Price Lead time
11020 1 mg $110.00 in stock
21020 5 mg $210.00 in stock
41020 25 mg $410.00 in stock
51020 50 mg $695.00 in stock
61020 100 mg $1190.00 in stock

Cyanine3 NHS ester is a reactive dye for the labeling of amino-groups in biomolecules, an analog of Cy3® NHS ester. This reagent is ideal for the labeling of soluble proteins, peptides, and oligonucleotides/DNA. For delicate proteins consider using water-soluble sulfo-Cyanine3 NHS ester which does not require use of any co-solvent.

Cyanine3 NHS ester is a replacement for NHS esters of Cy3®, Alexa Fluor 546, and DyLight 549.

Absorption and emission spectra of Cyanine3 fluorophore

Absorption and emission spectra of Cyanine3 fluorophore

Customers also purchased with this product

Cyanine3 hydrazide

Cyanine3 hydrazide is a carbonyl-reactive dye for Cy3 channel.

Cyanine5 NHS ester

Amine-reactive Cyanine5 activated ester for the labeling of proteins, peptides, and other molecules.

Sulfo-Cyanine5 maleimide

Thiol reactive, water soluble cyanine dye for Cy5® channel.

General properties

Appearance: red powder
Mass spec M+ increment: 474.2
Molecular weight: 641.5
CAS number: 1393427-85-4 (without anion), 1393363-07-9 (chloride)
Molecular formula: C34H40N3BF4O4
IUPAC name: 3H-​Indolium, 2-​[3-​(1,​3-​dihydro-​1,​3,​3-​trimethyl-​2H-​indol-​2-​ylidene)​-​1-​propen-​1-​yl]​-​1-​[6-​[(2,​5-​dioxo-​1-​pyrrolidinyl)​oxy]​-​6-​oxohexyl]​-​3,​3-​dimethyl-​, tetrafluoroborate
Solubility: poorly soluble in water (2.3 mM = 1.5 g/L), soluble in organic solvents (DMF, DMSO, dichloromethane)
Quality control: NMR 1H and HPLC-MS (95+%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download
Product specifications

Spectral properties

Excitation maximum, nm: 555
ε, L⋅mol−1⋅cm−1: 150000
Emission maximum, nm: 570
Fluorescence quantum yield: 0.31
CF260: 0.04
CF280: 0.09

Product citations

  1. Li, L.; Wang, J.; Li, Y.; Radford, D.C.; Yang, J.; Kopeček, J. Broadening and Enhancing Functions of Antibodies by Self-Assembling Multimerization at Cell Surface. ACS Nano, in press. doi: 10.1021/acsnano.9b04868
  2. Antonov, S.A.; Novosadova, E.V.; Kobylansky, A.G.; Tarantul, V.Z.; Grivennikov, I.A. A Hybrid Detection Method Based on Peroxidase-mediated Signal Amplification and Click Chemistry for Highly Sensitive Background-free Immunofluorescent Staining. Journal of Histochemistry & Cytochemistry, 2019, 67(10), 771–782. doi: 10.1369/0022155419864113
  3. Lee, S.A.; Biteen, J.S. Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 5764–5769. doi: 10.1021/acs.jpclett.9b02480
  4. Malfanti, A.; Scomparin, A.; Pozzi, S.; Gibori, H.; Krivitsky, A.; Satchi-Fainaro, R.; Mastrotto, F.; Caliceti, P.; Salmaso, S. Oligo-guanidyl targeted bioconjugates forming rod shaped polyplexes as a new nanoplatform for oligonucleotide delivery. Journal of Controlled Release, 2019, 310, 58–73. doi: 10.1016/j.jconrel.2019.08.005
Show more (66)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.