Cyanine3 NHS ester

Cat. # Quantity Price Lead time
11020 1 mg $110.00 in stock
21020 5 mg $210.00 in stock
41020 25 mg $410.00 in stock
51020 50 mg $695.00 5 days
61020 100 mg $1190.00 in stock

Cyanine3 NHS ester is a reactive dye for the labeling of amino-groups in biomolecules, an analog of Cy3® NHS ester. This reagent is ideal for the labeling of soluble proteins, peptides, and oligonucleotides/DNA. For delicate proteins consider using water-soluble sulfo-Cyanine3 NHS ester which does not require use of any co-solvent.

Cyanine3 NHS ester is a replacement for NHS esters of Cy3®, Alexa Fluor 546, and DyLight 549.

Absorption and emission spectra of Cyanine3 fluorophore

Absorption and emission spectra of Cyanine3 fluorophore

Customers also purchased with this product

Cyanine5.5 hydrazide

Cyanine5.5 hydrazide is a carbonyl reactive NIR dye which is particularly suitable for the labeling of periodate oxidized glycoproteins, i.e. antibodies.

FAM azide, 6-isomer

FAM (fluorescein) azide, 6-isomer is a commonly used fluorescent dye azide for Click Chemistry.

Sulfo-Cyanine5.5 NHS ester

Water soluble, sulfonated, far-red sulfo-Cyanine5.5 dye in the form of NHS ester.

General properties

Appearance: red powder
Mass spec M+ increment: 474.2
Molecular weight: 641.5
CAS number: 1032678-38-8, 1032815-92-1
Molecular formula: C34H40N3BF4O4
Solubility: soluble in organic solvents (DMF, DMSO, dichloromethane), insoluble in water
Quality control: NMR 1H and HPLC-MS (95+%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

Excitation maximum, nm: 555
ε, L⋅mol−1⋅cm−1: 150000
Emission maximum, nm: 570
Fluorescence quantum yield: 0.31
CF260: 0.04
CF280: 0.09

Product citations

  1. Rho, J.Y.; Brendel, J.C.; MacFarlane, L.R.; Mansfield, E.D.H.; Peltier, R.; Rogers, S.; Hartlieb, M.; Perrier, S. Probing the Dynamic Nature of Self-Assembling Cyclic Peptide–Polymer Nanotubes in Solution and in Mammalian Cells. Advanced Functional Materials, in press. doi: 10.1002/adfm.201704569
  2. Ye, K.; Sinawang, P.D.; Yoong, A.T.I.; Marks, R.S. Photoinducible silane diazirine as an effective crosslinker in the construction of a chemiluminescent immunosensor targeting a model E. coli analyte. Sensors and Actuators B: Chemical, 2018, 256, 234–242. doi: 10.1016/j.snb.2017.10.058
  3. Poreba, M.; Rut, W.; Vizovisek, M.; Groborz, K.; Kasperkiewicz, P.; Finlay, D.; Vuori, K.; Turk, D.; Turk, B.; Salvesen, G.; Drag, M. Selective imaging of human cathepsin L in breast cancer by fluorescent activity-based probes. Chemical Science, 2018, 9(8), 2113–2129. doi: 10.1039/C7SC04303A
  4. He, H.; Markoutsa, E.; Li, J.; Xu, P. Repurposing Disulfiram for Cancer Therapy via Targeted Nanotechnology through Enhanced Tumor Mass Penetration and Disassembly. Acta Biomaterialia, 2018, 68, 113–124. doi: 10.1016/j.actbio.2017.12.023
  5. Li, L.; Yang, J.; Wang, J.; Kopeček, J. Drug-Free Macromolecular Therapeutics Induce Apoptosis via Calcium Influx and Mitochondrial Signaling Pathway. Macromolecular Bioscience, 2018, 1, 1700196. doi: 10.1002/mabi.201700196
  6. Locke, L.W.; Kothandaraman, S.; Tweedle, M.; Chaney, S.; Wozniak, D.; Schlesinger, L.S. Use of a leukocyte-targeted peptide probe as a potential tracer for imaging the tuberculosis granuloma. Tuberculosis, 2018, 108, 201–210. doi: 10.1016/
  7. Sato, S.-I.; Yatsuzuka, K.; Katsuda, Y.; Uesugi, M. Method for Imaging Live-Cell RNA Using an RNA Aptamer and a Fluorescent Probe. Methods in Molecular Biology, 2018, 1649, 305–318. doi: 10.1007/978-1-4939-7213-5_20
  8. Kim, J.-w.; Heu, W.; Jeong, S.; Kim, H.-S. Genetically functionalized ferritin nanoparticles with a high-affinity protein binder for immunoassay and imaging. Analytica Chimica Acta, 2017, 988, 81–88. doi: 10.1016/j.aca.2017.07.060
  9. Zhang, C.; Yang, L.; Ding, Y.; Wang, Y.; Lan, L.; Ma, Q.; Chi, X.; Wei, P.; Zhao, Y.; Steinbüchel, A.; Zhang, H.; Liu, P. Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nature Communications, 2017, 8, 15979. doi: 10.1038/ncomms15979
  10. Sun, S.; Li, L.; Yang, F.; Wang, X.; Fan, F.; Yang, M.; Chen, C.; Li, X.; Wang, H.-W.; Sui, S.-F. Cryo-EM structures of the ATP-bound Vps4E233Q hexamer and its complex with Vta1 at near-atomic resolution. Nature Communications, 2017, 8, 16064. doi: 10.1038/ncomms16064
  11. Rosier, B.J.H.M.; Cremers, G.A.O.; Engelen, W.; Merkx, M.; Brunsveld, L.; de Greef, T.F.A. Incorporation of native antibodies and Fc-fusion proteins on DNA nanostructures via a modular conjugation strategy. Chemical Communications, 2017, 53, 7393–7396. doi: 10.1039/c7cc04178k
  12. Maity, S.; Hashemi, M.; Lyubchenko, Y.L. Nano-assembly of amyloid β peptide: role of the hairpin fold. Scientific Reports, 2017, 7, 2344. doi: 10.1038/s41598-017-02454-0
  13. Tang, X.-L.; Yuan, C.-H.; Ding, Q.; Zhou, Y.; Pan, Q.; Zhang, X.-L. Selection and identification of specific glycoproteins and glycan biomarkers of macrophages involved in Mycobacterium tuberculosis infection. Tuberculosis, 2017, 104, 95–106. doi: 10.1016/
  14. Taskova, M.; Uhd, J.; Miotke, L.; Kubit, M.; Bell, J.; Ji, H.P.; Astakhova, K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Analytical Chemistry, 2017, 89(8), 4363–4366. doi: 10.1021/acs.analchem.7b00646
  15. Chen, K.; Guo, L.; Zhang, J.; Chen, Q.; Wang, K.; Li, C.; Li, W.; Qiao, M.; Zhao, X.; Hu, H.; Chen, D. A gene delivery system containing nuclear localization signal: increased nucleus import and transfection efficiency with the assistance of RanGAP1. Acta Biomaterialia, 2017, 48, 215–226. doi: 10.1016/j.actbio.2016.11.004
  16. Shirure, V.S.; George, S.C. Design considerations to minimize the impact of drug absorption in polymer-based organ-on-a-chip platforms. Lab on a Chip, 2017, 17(4), 681–690. doi: 10.1039/c6lc01401a
  17. Lu, K.-Y.; Li, R.; Hsu, C.-H.; Lin, C.-W.; Chou, S.-C.; Tsai, M.-L.; Mi, F.-L. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydrate Polymers, 2017, 165, 410–420. doi: 10.1016/j.carbpol.2017.02.065
  18. Taneja, N.; Zofall, M.; Balachandran, V.; Thillainadesan, G.; Sugiyama, T.; Wheeler, D.; Zhou, M.; Grewal, S.I.S. SNF2 Family Protein Fft3 Suppresses Nucleosome Turnover to Promote Epigenetic Inheritance and Proper Replication. Molecular Cell, 2017, 66(1), 50–62. doi: 10.1016/j.molcel.2017.02.006
  19. Gilbert, T.; Alsop, R.J.; Babi, M.; Moran-Mirabal, J.; Rheinstadter, M.C.; Hoare, T. Nanostructure of Fully Injectable Hydrazone-Thiosuccinimide Interpenetrating Polymer Network Hydrogels Assessed by Small-Angle Neutron Scattering and dSTORM Single-Molecule Fluorescence Microscopy. ACS Applied Materials & Interfaces, 2017, 9(48), 42179–42191. doi: 10.1021/acsami.7b11637
  20. Lin, T.-H.; Lin, C.-H.; Liu, Y.-J.; Huang, C.Y.; Lin, Y.-C.; Wang, S.-K. Controlling Ligand Spacing on Surface: Polyproline-Based Fluorous Microarray as a Tool in Spatial Specificity Analysis and Inhibitor Development for Carbohydrate-Protein Interactions. ACS Applied Materials & Interfaces, 2017, 9(48), 41691–41699. doi: 10.1021/acsami.7b13200
  21. Ramirez, Lisa and Herschkowitz, Jason I. and Wang, Jun. Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells. Scientific Reports, 2016, 6, 32505. doi: 10.1038/srep32505
  22. Hong, W.; Lee, S.; Chang, H.J.; Lee, E.S.; Cho, Y. Multifunctional magnetic nanowires: A novel breakthrough for ultrasensitive detection and isolation of rare cancer cells from non-metastatic early breast cancer patients using small volumes of blood. Biomaterials, 2016, 106, 78–86. doi: 10.1016/j.biomaterials.2016.08.020
  23. Wang, C.; Tang, F.; Wang, X.; Li, L. Synthesis and application of biocompatible gold core-poly-(L-Lysine) shell nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 425–430. doi: 10.1016/j.colsurfa.2016.07.014
  24. Zhong, Q.; Merkel, O.M.; Reineke, J.J.; da Rocha, S.R.P. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on their Systemic and Lung Cellular Biodistribution. Molecular Pharmaceutics, 2016, 13(6), 1866–1878. doi: 10.1021/acs.molpharmaceut.6b00036
  25. Ray, J.; Shin, I.; Ilgu, M.; Bendickson, L.; Gupta, V.; Kraus, G.A.; Nilsen-Hamilton, M. IMAGEtags: Quantifying mRNA Transcription in Real Time with Multiaptamer Reporters. Methods in Enzymology, 2016, 572, 193–213. doi: 10.1016/bs.mie.2016.02.028
  26. Hartley, J.M.; Zhang, R.; Gudheti, M.; Yang, J.; Kopeček, J. Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM. Journal of Controlled Release, 2016, 231, 50–59. doi: 10.1016/j.jconrel.2016.02.005
  27. Leenders, J.; Baker, M.B.; Pijpers, I.; Lafleur, R.; Albertazzi, L.; Palmans, A.R.A.; Meijer, E.W. Supramolecular polymerisation in water; elucidating the role of hydrophobic and hydrogen-bond interactions. Soft Matter, 2016, 12, 2887–2893. doi: 10.1039/c5sm02843d
  28. Kijima, S.T.; Hirose, K.; Kong, S.-G.; Wada, M.; Uyeda, T.Q.P. Distinct Biochemical Properties of Arabidopsis thaliana Actin Isoforms. Plant and Cell Physiology, 2016, 57(1), 46–56. doi: 10.1093/pcp/pcv176
  29. Poongavanam, M.-V.; Kisley, L.; Kourentzi, K.; Landes, C.F.; Willson, C. Ensemble and Single-Molecule Biophysical Characterization of D17.4 DNA Aptamer-IgE Interactions. Biochimica et Biophysica Acta, 2016, 1864(1), 154–164. doi: 10.1016/j.bbapap.2015.08.008
  30. Koo, H.; Choi, M.; Kim, E.; Hahn, S.K.; Weissleder, R.; Yun, S.H. Bioorthogonal Click Chemistry-Based Synthetic Cell Glue. Small, 2015, 11(48), 6458–6466. doi: 10.1002/smll.201502972
  31. Albertazzi, L.; van der Veeken, N.; Baker, M.B.; Palmans, A.R.A.; Meijer, E.W. Supramolecular copolymers with stimuli-responsive sequence control. Chemical Communications, 2015, 51(90), 16166–16168. doi: 10.1039/c5cc06951c
  32. Yang, J.; Zhang, R.; Radford, D.C.; Kopeček, J. FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. Journal of Controlled Release, 2015, 218, 36–44. doi: 10.1016/j.jconrel.2015.09.045
  33. Søndergaard, S.; Aznauryan, M.; Haustrup, E.K.; Schiøtt, B.; Birkedal, V.; Corry, B. Dynamics of Fluorescent Dyes Attached to G-Quadruplex DNA and their Effect on FRET Experiments. ChemPhysChem, 2015, 16(12), 2562–2570. doi: 10.1002/cphc.201500271
  34. Li, X.-P.; Jing, W.; Sun, J.-J.; Liu, Z.-Y.; Zhang, J.-T.; Sun, W.; Zhu, W.; Fan, Y.-Z. A potential small-molecule synthetic antilymphangiogenic agent norcantharidin inhibits tumor growth and lymphangiogenesis of human colonic adenocarcinomas through blocking VEGF-A,-C,-D/VEGFR-2,-3 "multi-points priming" mechanisms in vitro and ... BMC Cancer, 2015, 15, 527. doi: 10.1186/s12885-015-1521-5
  35. Rammohan, J.; Ruiz Manzano, A.; Garner, A.L.; Stallings, C.L.; Galburt, E.A. CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism. Nucleic Acids Research, 2015, 43(6), 3272–3285. doi: 10.1093/nar/gkv078
  36. Baker, Matthew B. and Albertazzi, Lorenzo and Voets, Ilja K. and Leenders, Christianus M.A. and Palmans, Anja R.A. and Pavan, Giovanni M. and Meijer, E.W. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer. Nature Communications, 2015, 6, 6234. doi: 10.1038/ncomms7234
  37. Choi, E.B.; Choi, J.; Bae, S.R.; Kim, H.-O.; Jang, E.; Kang, B.; Kim, M.-H.; Kim, B.; Suh, J.-S.; Lee, K. et al. Colourimetric redox-polyaniline nanoindicator for in situ vesicular trafficking of intracellular transport. Nano Research, 2015, 8(4), 1169–1179. doi: 10.1007/s12274-014-0597-6
  38. Guenther, D.; Anderson, G.; Karmakar, S.; Anderson, B.A.; Didion, B.A.; Guo, W.; Verstegen, J.; Hrdlicka, P.J. Invader probes: Harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications. Chemical Science, 2015, 6, 5006–2015. doi: 10.1039/c5sc01238d
  39. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  40. Kim, J.; Yang, Y.; Song, S.S.; Na, J.-H.; Oh, K.J.; Jeong, C.; Yu, Y.G.; Shin, Y.-K. Beta-Amyloid Oligomers Activate Apoptotic BAK Pore for Cytochrome c Release. Biophysical Journal, 2014, 107(7), 1601-1608. doi: 10.1016/j.bpj.2014.07.074
  41. Petkau-Milroy, K.; Sonntag, M.; Colditz, A.; Brunsveld, L. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks. International Journal of Molecular Sciences, 2013, 14(10), 21189–21201. doi: 10.3390/ijms141021189
  42. Albertazzi, L.; Martinez-Veracoechea, F.J.; Leenders, C.M.A.; Voets, I.K.; Frenkel, D.; Meijer, E.W. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(30), 12203-12208. doi: 10.1073/pnas.1303109110
  43. Cao, Z.; Partyka, K.; McDonald, M.; Brouhard, E.; Hincapie, M.; Brand, R.E.; Hancock, W.S.; Haab, B.B. Modulation of Glycan Detection on Specific Glycoproteins by Lectin Multimerization. Analytical Chemistry, 2013, 85(3), 1689-1698. doi: 10.1021/ac302826a
  44. Haller, A.; Altman, R.B.; Souliere, M.F.; Blanchard, S.C.; Micura, R. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(11), 4188-4193. doi: 10.1073/pnas.1218062110
  45. Kaastrup, K.; Chan, L.; Sikes, H.D. Impact of Dissociation Constant on the Detection Sensitivity of Polymerization-Based Signal Amplification Reactions. Analytical Chemistry, 2013, 85(17), 8055-8060. doi: 10.1021/ac4018988
  46. Gatzogiannis, E.; Chen, Z.; Wei, L.; Wombacher, R.; Kao, Y.-T.; Yefremov, G.; Cornish, V.W.; Min, W. Mapping protein-specific micro-environments in live cells by fluorescence lifetime imaging of a hybrid genetic-chemical molecular rotor tag. Chemical Communications, 2012, 48(69), 8694-8694. doi: 10.1039/c2cc33133k
  47. Kaastrup, K.; Sikes, H.D. Polymerization-based signal amplification under ambient conditions with thirty-five second reaction times. Lab on a Chip, 2012, 12(20), 4055-4055. doi: 10.1039/c2lc40584a
Show more (43)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.