Cyanine5 maleimide

Cat. # Quantity Price Lead time
13080 1 mg $110.00 in stock
23080 5 mg $210.00 in stock
43080 25 mg $410.00 in stock
53080 50 mg $695.00 in stock
63080 100 mg $1190.00 in stock

Cyanine5 maleimide is a mono-reactive dye which selectively couples with thiol groups (for example, with cysteines in peptides and proteins) to give labeled conjugates.

Cyanine5 is an analog of Cy5®, a common fluorophore which is compatible with various instrumentation like microscopes, imagers, and fluorescence readers.

For the labeling of antibodies and sensitive proteins we recommend to use the water soluble sulfo-Cyanine5 maleimide.

Cy5 excitation and emission spectra

Customers also purchased with this product

Sulfo-Cyanine7 NHS ester

Sulfo-Cyanine7 NHS ester is a water soluble, near infrared, amine-reactive dye.

BDP TMR maleimide

A bright, thiol reactive dye for TAMRA channel. Useful for microscopy and fluorescence polarization assays, among other applications.
Add this product to your cart and
get free express delivery

Sulfo-Cyanine5.5 amine

Sulfo-Cyanine5.5 is a far red/NIR fluorophore possessing high hydrophilicity and aqueous solubility. The dye displays good brightness in far red region due to outstanding molar extinction coefficient. This is amine derivative which is reactive towards electrophiles. It can also be used for enzymatic transamination labeling.

General properties

Appearance: dark blue powder
Molecular weight: 641.24
Molecular formula: C38H45ClN4O3
Solubility: soluble in organic solvents (DMF, DMSO, dichloromethane), insoluble in water
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

Excitation maximum, nm: 646
ε, L⋅mol−1⋅cm−1: 250000
Emission maximum, nm: 662
Fluorescence quantum yield: 0.2
CF260: 0.03
CF280: 0.04

Product citations

  1. Baranova, N.; Loose, M. Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers. Methods in Cell Biology, 2017, 137, 355–370. doi: 10.1016/bs.mcb.2016.03.036
  2. Zhang, Z.; Yomo, D.; Gradinaru, C. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment. Biochimica et Biophysica Acta – Biomembranes, 2017, 1859(7), 1242–1253. doi: 10.1016/j.bbamem.2017.04.001
  3. Chen, L.; Weinmeister, R.; Kralovicova, J.; Eperon, L.P.; Vorechovsky, I.; Hudson, A.J.; Eperon, I.C. Stoichiometries of U2AF35, U2AF65 and snRNP reveal new early spliceosome assembly pathways. Nucleic Acids Research, 2017, 45(4), 2051–2067. doi: 10.1093/nar/gkw860
  4. Hinde, E.; Thammasiraphop, K.; Duong, H.T.T.; Yeow, J.; Karagoz, B.; Boyer, C.; Gooding, J.J.; Gaus, K. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nature Nanotechnology, 2017, 12(1), 81–89. doi: 10.1038/nnano.2016.160
  5. Sahle, F.F.; Giulbudagian, M.; Bergueiro, J.; Lademann, J.; Calderón, M. Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale, 2017, 9(1), 172–182. doi: 10.1039/c6nr06435c
  6. Jackson, A.; Jani, S.; Sala, C.D.; Soler-Bistué, A.J.C.; Zorreguieta, A.; Tolmasky, M.E. Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: a methodology for inhibition of expression of antibiotic resistance genes. Biology Methods and Protocols, 2016, 1(1), bpw001. doi: 10.1093/biomethods/bpw001
  7. Yoshimura, T.; Kurogi, K.; Liu, M.-C.; Suiko, M.; Sakakibara, Y. A proteomic approach for the analysis of S-nitrosylated proteins using a fluorescence labeling technique. Journal of Electrophoresis, 2016, 60(1), 5–14. doi: 10.2198/jelectroph.60.5
  8. Xue, C.; Whitis, N.R.; Sashital, D.G. Conformational Control of Cascade Interference and Priming Activities in CRISPR Immunity. Molecular Cell, 2016, 64(4), 826–834. doi: 10.1016/j.molcel.2016.09.033
  9. Kollarigowda, R.H.; De Santo, I.; Rianna, C.; Fedele, C.; Manikas, A.C.; Cavalli, S.; Netti, P.A. Shedding light on azopolymer brush dynamics by fluorescence correlation spectroscopy. Soft Matter, 2016, 12(34), 7102–7111. doi: 10.1039/c6sm01482h
  10. Chadda, R.; Krishnamani, V.; Mersch, K.; Wong, J.; Brimberry, M.; Chadda, A.; Kolmakova-Partensky, L.; Friedman, L.J.; Gelles, J.; Robertson, J.L. The dimerization equilibrium of a ClC Cl/H+ antiporter in lipid bilayers. eLIFE, 2016, 5, e17438. doi: 10.7554/eLife.17438
  11. Zhao, Y.; Wei, Z.; Zhao, H.; Jia, J.; Chen, Z.; Zhang, S.; Ouyang, Z.; Ma, X.; Zhang, X. In situ Ion-Transmission Mass Spectrometry for Paper-Based Analytical Devices. Analytical Chemistry, 2016, 88(22), 10805–10810. doi: 10.1021/acs.analchem.6b03272
  12. Noriega, R.; Finley, D.T.; Haberstroh, J.; Geissler, P.L.; Francis, M.B.; Ginsberg, N.S. Manipulating Excited-State Dynamics of Individual Light-Harvesting Chromophores through Restricted Motions in a Hydrated Nanoscale Protein Cavity. The Journal of Physical Chemistry B, 2015, 119(23), 6963–6973. doi: 10.1021/acs.jpcb.5b03784
  13. Leonard, J.D.; Narlikar, G.J. A Nucleotide-Driven Switch Regulates Flanking DNA Length Sensing by a Dimeric Chromatin Remodeler. Molecular Cell, 2015, 57(5), 850–859. doi: 10.1016/j.molcel.2015.01.008
  14. Popp, M.W. Site-Specific Labeling of Proteins via Sortase: Protocols for the Molecular Biologist. Methods in Molecular Biology, 2015, 1266, 185–198. doi: 10.1007/978-1-4939-2272-7_13
  15. Lipchik, A.M.; Perez, M.; Cui, W.; Parker, L.L. Multicolored, Tb3+-Based Antibody-Free Detection of Multiple Tyrosine Kinase Activities. Analytical Chemistry, 2015, 87(15), 7555–7558. doi: 10.1021/acs.analchem.5b02233
  16. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  17. Damayanti, N.P.; Parker, L.L.; Irudayaraj, J.M.K. Fluorescence Lifetime Imaging of Biosensor Peptide Phosphorylation in Single Live Cells. Angewandte Chemie International Edition, 2013, 52(14), 3931-3934. doi: 10.1002/anie.201209303
  18. Hartley, M.D.; Schneggenburger, P.E.; Imperiali, B. Lipid bilayer nanodisc platform for investigating polyprenol-dependent enzyme interactions and activities. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(52), 20863-20870. doi: 10.1073/pnas.1320852110
Show more (14)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.
translate