Cyanine5 amine

Cat. # Quantity Price Lead time
130C0 1 mg $110.00 in stock
230C0 5 mg $210.00 in stock
430C0 25 mg $410.00 in stock
530C0 50 mg $695.00 in stock
630C0 100 mg $1190.00 in stock

Cyanine5 amine is a reactive dye which contains amino group, an analog of Cy5® amine. This reagent can be coupled with a variety of activated esters and other electrophilic reagents. For example, this amine can be coupled with EDC-activated carboxylic groups.

This bright and photostable dye is suitable for many different methods of fluorescence detection. Colorful fluorophore can also be easily detected in small quantities (nanomols) by naked human eye.

Cyanine5 amine absorbance and emission spectra

Cyanine5 amine absorbance and emission spectra

Customers also purchased with this product

BDP R6G amine

Amine derivative of BDP R6G, borondipyrromethene dye matching Rhodamine 6G (R6G) channel. The terminal aliphatic amine group can be conjugated with various electrophiles.

BDP 581/591 amine

BDP 581/591 fluorophore derivative with free amine group for the conjugation with electrophilic reagents, and enzymatic transamination.

Sulfo-Cyanine5 carboxylic acid

Water-soluble Cyanine5 carboxylic acid, non-activated fluorescent dye.

General properties

Appearance: dark blue powder
Molecular weight: 653.77
CAS number: 1807529-70-9 (Cl-), 1807589-58-7
Molecular formula: C38H54Cl2N4O
Solubility: moderate solubility in water, good in polar organic solvents (DMF, DMSO, alcohols)
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light.
MSDS: Download

Spectral properties

Excitation maximum, nm: 646
ε, L⋅mol−1⋅cm−1: 250000
Emission maximum, nm: 662
Fluorescence quantum yield: 0.2
CF260: 0.03
CF280: 0.04

Product citations

  1. Pan, G.; Jia, T.-t.; Huang, Q.-x. Qiu, Y.-y.; Xu, J. Yin, P.-h.; Liu, T. Mesoporous Silica Nanoparticles (MSNs)-Based Organic/Inorganic Hybrid Nanocarriers Loading 5-Fluorouracil for the Treatment of Colon Cancer with Improved Anticancer Efficacy. Colloids and Surfaces, B: Biointerfaces, 2017, 159, 375–385. doi: 10.1016/j.colsurfb.2017.08.013
  2. Chen, G.; Wang, Y.; Xie, R.; Gong, S. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. Journal of Controlled Release, 2017, 259, 105–114. doi: 10.1016/j.jconrel.2017.01.042
  3. Wilson, D.R.; Routkevitch, D.; Rui, Y.; Mosenia, A.; Wahlin, K.J.; Quinones-Hinojosa, A.; Zack, D.J.; Green, J.J. A Triple-Fluorophore Labeled Nucleic Acid pH Nanosensor to Investigate Non-Viral Gene Delivery. Molecular Therapy, 2017, 25(7), 1697–1709. doi: 10.1016/j.ymthe.2017.04.008
  4. Wang, Y.; Wang, L.; Chen, G.; Gong, S. Carboplatin-Complexed and cRGD-Conjugated Unimolecular Nanoparticles for Targeted Ovarian Cancer Therapy. Macromolecular Bioscience, 2017, 17(5), 1600292. doi: 10.1002/mabi.201600292
  5. Qu, J.-B.; Chapman, R.; Chen, F.; Lu, H.; Stenzel, M.H. Swollen Micelles for the Preparation of Gated, Squeezable, pH-Responsive Drug Carriers. ACS Applied Materials & Interfaces, 2017, 9(16), 13865–13874. doi: 10.1021/acsami.7b01120
  6. Yin, M.; Bao, Y.; Gao, X.; Wu, Y.; Sun, Y.; Zhao, X.; Xu, H.; Zhang, Z.; Tan, S. Redox/pH dual-sensitive hybrid micelles for targeting delivery and overcoming multidrug resistance of cancer. Journal of Materials Chemistry B, 2017, 5(16), 2964–2978. doi: 10.1039/c6tb03282f
  7. Glass, J.J.; Li, Y.; De Rose, R.; Johnston, A.P.R.; Czuba, E.I.; Khor, S.Y.; Quinn, J.F.; Whittaker, M.R.; Davis, T.P.; Kent, S.J. Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components. ACS Applied Materials & Interfaces, 2017, 9(14), 12182-12194. doi: 10.1021/acsami.6b15942
  8. Zhang, R.; Yang, J.; Radford, D.C.; Fang, Y.; Kopeček, J. FRET Imaging of Enzyme-Responsive HPMA Copolymer Conjugate. Macromolecular Bioscience, 2017, 17(1), 1600125. doi: 10.1002/mabi.201600125
  9. Shalgunov, V.; Zaytseva-Zotova, D.; Zinchenko, A.; Levada, T.; Shilov, Y.; Andreyev, D.; Dzhumashev, D.; Metelkin, E.; Urusova, A.; Demin, O.; McDonnell, K.; Troiano, G.; Zale, S.; Safarovа, E. Comprehensive study of the drug delivery properties of poly(L-lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice. Journal of Controlled Release, 2017, 261, 31–42. doi: 10.1016/j.jconrel.2017.06.006
  10. Stefanello, T.; Couturaud, B.; Szarpak, A.; Fournier, D.; Louage, B.; Garcia, F.; Vataru Nakamura, C.; De Geest, B.; Woisel, P.; van der Sanden, B.; Auzely, R. Coumarin-containing thermoresponsive hyaluronic acid-based nanogels as delivery systems for anticancer chemotherapy. Nanoscale, 2017, 9(33), 12150–12162. doi: 10.1039/C7NR03964F
  11. Yang, W.; Xia, Y.; Zou, Y.; Meng, F.; Zhang, J.; Zhong, Z. Bioresponsive Chimaeric Nano-polymersomes Enable Targeted and Efficacious Protein Therapy for Human Lung Cancers in Vivo. Chemistry of Materials, 2017, 29(20), 8757–8765. doi: 10.1021/acs.chemmater.7b02953
  12. Pombo-García, K.; Weiss, S.; Zarschler, K.; Ang, C.-S.; Hübner, R.; Pufe, J.; Meister, S.; Seidel, J.; Pietzsch, J.; Spiccia, L.; Stephan, H.; Graham, B. Zwitterionic polymer-coated ultrasmall superparamagnetic iron oxide nanoparticles with low protein interaction and high biocompatibility. ChemNanoMat, 2016, 2(10), 959–971. doi: 10.1002/cnma.201600233
  13. Mann, S.K.; Dufour, A.; Glass, J.J.; De Rose, R.; Kent, S.J.; Such, G.K.; Johnston, A.P.R. Tuning the properties of pH responsive nanoparticles to control cellular interactions in vitro and ex vivo. Polymer Chemistry, 2016, 7(38), 6015–6024. doi: 10.1039/c6py01332e
  14. Mann, S.K.; Czuba, E.; Selby, L.I.; Such, G.K.; Johnston, A.P.R. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay. Pharmaceutical Research, 2016, 33(10), 2421–2432. doi: 10.1007/s11095-016-1984-3
  15. Priwitaningrum, D.L.; Blonde, J.-B.; van Baarlen, J.; Hennink, W.E.; Storm, G.; Le Gac, S.; Prakash, J. Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration. Journal of Controlled Release, 2016, 244(Part B), 257–268. doi: 10.1016/j.jconrel.2016.09.004
  16. Zhu, Y.; Wang, X.; Chen, J.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. Journal of controlled release, 2016, 244(Part B), 229–239. doi: 10.1016/j.jconrel.2016.08.027
  17. Hartley, J.M.; Zhang, R.; Gudheti, M.; Yang, J.; Kopeček, J. Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM. Journal of Controlled Release, 2016, 231, 50–59. doi: 10.1016/j.jconrel.2016.02.005
  18. Bruckman, M.A.; Czapar, A.E.; VanMeter, A.; Randolph, L.N.; Steinmetz, N.F. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 2016, 231, 103–113. doi: 10.1016/j.jconrel.2016.02.045
  19. Liu, T.; Yuan, X.; Jia, T.; and Liu, C.; Ni, Z.; Qin, Z.; Yuan, Y. Polymeric Prodrug of Bufalin for Increasing Solubility and Stability: Synthesis and Anticancer Study in Vitro and in Vivo. International Journal of Pharmaceutics, 2016, 506(1–2), 382–393. doi: 10.1016/j.ijpharm.2016.04.041
  20. Pan, G.; Bao, Y.-J.; Xu, J.; Liu, T.; Liu, C.; Qiu, Y.-Y.; Shi, X.-J.; Yu, H.; Jia, T.-T.; Yuan, X.; Yuan, Z.-T.; Yin, P.-H.; Cao, Y.-J. Esterase-responsive polymeric prodrug-based tumor targeting nanoparticles for improved anti-tumor performance against colon cancer. RSC Advances, 2016, 6(48), 42109–42119. doi: 10.1039/c6ra05236c
  21. Gao, D.; Zhang, P.; Liu, C.; Chen, C.; Gao, G.; Wu, Y.; Sheng, Z.; Song, L.; Cai, L. Compact chelator-free Ni-integrated CuS nanoparticles with tunable near-infrared absorption and enhanced relaxivity for in vivo dual-modal photoacoustic/MR imaging. Nanoscale, 2015, 7, 17631–17636. doi: 10.1039/C5NR05237H
  22. Yang, J.; Zhang, R.; Radford, D.C.; Kopeček, J. FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. Journal of Controlled Release, 2015, 218, 36–44. doi: 10.1016/j.jconrel.2015.09.045
  23. Fuchs, A.V.; Tse, B.W.C.; Pearce, A.K.; Yeh, M.-C.; Fletcher, N.L.; Huang, S.S.; Heston, W.D.; Whittaker, A.K.; Russell, P.J.; Thurecht, K.J. Evaluation of Polymeric Nanomedicines Targeted to PSMA: Effect of Ligand on Targeting Efficiency. Biomacromolecules, 2015, 16(10), 3235–3247. doi: 10.1021/acs.biomac.5b00913
  24. Li, H.; Yang, Z.-Y.; Liu, C.; Zeng, Y.-P.; Hao, Y.-H. Gu, Y.; Wang, W.-D.; Li, R. PEGylated ceria nanoparticles used for radioprotection on Human liver cells under γ-ray irradiation. Free Radical Biology and Medicine, 2015, 87, 26–35. doi: 10.1016/j.freeradbiomed.2015.06.010
  25. Guo, Y.; Wang, D.; Song, Q.; Wu, T.; Zhuang, X.; Bao, Y.; Kong, M.; Qi, Y.; Tan, S.; Zhang, Z. Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma. ACS Nano, 2015, 9(7), 6918–6933. doi: 10.1021/acsnano.5b01042
  26. Ma, Y.; Fuchs, A.; Boase, N.R.B.; Rolfe, B.E.; Coombes, A.G.A.; Thurecht, K.J. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: evaluation of their potential for colon-specific delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 393–403. doi: 10.1016/j.ejpb.2015.06.014
  27. Zhang, R.; Yang, J.; Sima, M.; Zhou, Y.; Kopeček, J. Sequential combination therapy of ovarian cancer with degradable N-(2-hydroxypropyl)methacrylamide copolymer paclitaxel and gemcitabine conjugates. Proceedings of the National Academy of Sciences of the U.S.A., 2014, 111(33), 12181-12186. doi: 10.1073/pnas.1406233111
Show more (23)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.