TAMRA azide, 6-isomer

Cat. # Quantity Price Lead time
A8130 1 mg $110.00 in stock
B8130 5 mg $210.00 in stock
C8130 10 mg $310.00 in stock
D8130 25 mg $410.00 in stock
E8130 50 mg $695.00 in stock
F8130 100 mg $1190.00 in stock

Tetramethylrhodamine (TAMRA) is a xanthene dye with orange emission. The dye is a FRET acceptor for FAM, and sometimes used as a quencher for it.

Like other xanthenes, TAMRA exists as two isomers (5- and 6-), which have very similar spectral properties. This is an azide derivative of 6-isomer of TAMRA. The azide can be conjugated with terminal alkynes using copper-catalyzed Click chemistry, or with cycloalkynes with copper-free strain promoted alkyne azide cycloaddition (spAAc) reaction.

Customers also purchased with this product

JOE azide, 5- isomer

JOE is a chlorinated fluorescein dye which is often used for HEX channel for oligonucleotides. It is less hydrophobic than HEX. This is an azide derivative for Click chemistry

FAM azide, 6-isomer

FAM (fluorescein) azide, 6-isomer is a commonly used fluorescent dye azide for Click Chemistry.

Copper(II)-TBTA complex, 10 mM in 55% aq. DMSO

Catalyst for bioconjugate synthesis by Click Chemistry.

General properties

Appearance: violet solid / solution
Mass spec M+ increment: 512.2
Molecular weight: 512.56
CAS number: 1192590-89-8
Molecular formula: C28H28N6O4
Solubility: Good in DMF, DMSO, alcohols, low in water
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download
Product specifications

Spectral properties

Excitation maximum, nm: 541
ε, L⋅mol−1⋅cm−1: 84000
Emission maximum, nm: 567
Fluorescence quantum yield: 0.1
CF260: 0.32
CF280: 0.19

Product citations

  1. Xu, Y.; Deng, Z.; Shi, Y.; Chen, X.; Xu, J.; Zhong, S.; Xiao, Y.; Wong, N.-K.; Zhou, Y. Molecular Imaging and In Situ Quantitative Profiling of Fatty Acid Synthase with a Chemical Probe. Analytical Chemistry, 2020, 92(6), 4419–4426. doi: 10.1021/acs.analchem.9b05327
  2. Zhang, S.; Spiegelman, N.A.; Lin, H. Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling. Methods in Molecular Biology, 2019, 2009, 137–147. doi: 10.1007/978-1-4939-9532-5_11
  3. Tang, G.; Liu, L.; Wang, X.; Pan, Z. Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as selective covalent irreversible inhibitors of interleukin-2-inducible T-cell kinase (Itk). European Journal of Medicinal Chemistry, 2019, 173, 167–183. doi: 10.1016/j.ejmech.2019.03.055
  4. Eelen, G.; Dubois, C.; Cantelmo, A.R.; Goveia, J.; Brüning, U.; DeRan, M.; Jarugumilli, G.; van Rijssel, J.; Saladino, G.; Comitani, F.; Zecchin, A.; Rocha, S.; Chen, R.; Huang, H.; Vandekeere, S.; Kalucka, J.; Lange, C.; Morales-Rodriguez, F.; Cruys, B.; Treps, L.; Ramer, L.; Vinckier, S.; Brepoels, K.; Wyns, S.; Souffreau, J.; Schoonjans, L.; Lamers, W.H.; Wu, Y.; Haustraete, J.; Hofkens, J.; Liekens, S.; Cubbon, R.; Ghesquière, B.; Dewerchin, M.; Gervasio, F.L.; Li, X.; van Buul, J.D.; Wu, X.; Carmeliet, P. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature, 2018, 561(7721), 63–69. doi: 10.1038/s41586-018-0466-7
Show more (10)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.