AF 568 DBCO
Cat. # | Quantity | Price | Lead time | Buy this product |
---|---|---|---|---|
1158F0 | 1 mg | $140 | in stock | |
2158F0 | 5 mg | $450 | in stock | |
4158F0 | 25 mg | $1460 | in stock | |
5158F0 | 50 mg | $1890 | in stock | |
6158F0 | 100 mg | $2990 | in stock |
Dibenzocyclooctyne (DBCO, DBCO, ADIBO) is one of the most reactive cycloalkynes for copper-free click reaction (SPAAC, strain-promoted azide-alkyne cycloaddition). The rate of interaction of DBCO with azides is significantly higher than that of other cyclooctynes, as well as Cu-catalyzed click reaction (CuAAC). Unlike other cyclooctynes, DBCO does not interact with tetrazines, which makes it possible to use it in bioorthogonal reactions together with trans-cyclooctenes and tetrazines.
AF 568 is a bright, photostable, and hydrophilic fluorophore that emits in the orange channel. The absorption maximum is 572 nm. The emission maximum is 598 nm.
AF 568 DBCO allows fluorescent labeling of azide-containing biomolecules inside living cells and whole organisms without the negative effect of copper ions on them, and inanimate samples.
Absorption and emission spectra of AF 568
Customers also purchased with this product
Alkyne-PEG3-NHS ester
Bifunctional hydrophilic linker with NHS ester and terminal alkyne functional group based on triethyleneglycol (PEG3).get free express delivery
AF 647 azide
Bright and photostable azide AF 647 for labeling alkyne-containing biomolecules and fluorescent visualization of biological objects.Biotin-PEG4-azide
Biotin azide is a reagent for click chemistry labeling with biotin, a well-known affinity probe to streptavidin.General properties
Appearance: | dark violet solid |
Molecular weight: | 1197.53 |
Molecular formula: | C66H80N6O11S2 |
Quality control: | NMR 1H and HPLC-MS (95+%) |
Storage conditions: | 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Desiccate. Avoid prolonged exposure to light. |
MSDS: | Download |
Product specifications |
Spectral properties
Excitation/absorption maximum, nm: | 572 |
ε, L⋅mol−1⋅cm−1: | 94238 |
Emission maximum, nm: | 598 |
Fluorescence quantum yield: | 0.912 |