TAMRA maleimide, 6-isomer
Cat. # | Quantity | Price | Lead time | Buy this product |
---|---|---|---|---|
18180 | 1 mg | $110.00 | in stock | |
28180 | 5 mg | $210.00 | in stock | |
48180 | 25 mg |
$410.00
|
in stock | |
58180 | 50 mg |
$695.00
|
in stock | |
68180 | 100 mg |
$1190.00
|
in stock |
TAMRA (also known as TMR or tetramethylrhodamine) is a xanthene dye that has been used as a fluorescent label for decades. Xanthene dyes are available as two isomers (called 5- and 6-isomers) that have almost identical fluorescent properties, but need to be separated to avoid doubling and smearing of labeled product peaks or bands during chromatography or electrophoresis. This is a pure 6-isomer of TAMRA maleimide, used for the labeling of proteins and peptides via thiol (SH) groups.
Absorption and emission spectra of 6-TAMRA

Recommended protocol
Customers also purchased with this product
ProteOrange Protein Gel Stain, 5000×
ProteOrange is a fluorescent dye for the staining of proteins in gels. ProteOrange is an analog of SYPRO orange. It is more sensitive than Coumassie.Cyanine5 NHS ester
Amine-reactive Cyanine5 activated ester for the labeling of proteins, peptides, and other molecules.sulfo-Cyanine7.5 maleimide
sulfo-Cyanine7.5 is a highly hydrophilic near infrared dye for in vivo imaging. This maleimide derivative is useful for the labeling of thiol groups of proteins and peptides.General properties
Appearance: | dark colored solid |
Mass spec M+ increment: | 551.2 |
Molecular weight: | 552.58 |
Molecular formula: | C31H28N4O6 |
Solubility: | good in DMSO, DMF |
Quality control: | NMR 1H, HPLC-MS (95%) |
Storage conditions: | Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate. |
MSDS: | Download |
Product specifications |
Spectral properties
Excitation/absorption maximum, nm: | 541 |
ε, L⋅mol−1⋅cm−1: | 84000 |
Emission maximum, nm: | 567 |
Fluorescence quantum yield: | 0.1 |
CF260: | 0.32 |
CF280: | 0.19 |
Product citations
- Ast, J.; Arvaniti, A.; Fine, N.H.F.; Nasteska, D.; Ashford, F.B.; Stamataki, Z.M Koszegi, Z.; Bacon, A.; Trapp, S.; Jones, B.J.; Hastoy, B.; Tomas, A.; Reissaus, C.; Linnemann, A.K.; D'Este, E.; Calebiro, D.; Johnsson, K.; Podewin, T.; Broichhagen, J.; Hodson, D.J. LUXendins reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. bioRxiv, preprint. doi: 10.1101/557132
- Sagert, L.; Hennig, F.; Thomas, C.; Tampé, R. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. eLife, 2020, 9, e55326. doi: 10.7554/eLife.55326
- Ast, J.; Arvaniti, A.; Fine, N.H.F.; Nasteska, D.; Ashford, F.B.; Stamataki, Z.; Koszegi, Z.; Bacon, A.; Jones, B.J.; Lucey, M.A.; Sasaki, S.; Brierley, D.I.; Hastoy, B.; Tomas, A.; D'Agostino, G.; Reimann, F.; Lynn, F.C.; Reissaus, C.A.; Linnemann, A.K.; D'Este, E.; Calebiro, D.; Trapp, S.; Johnsson, K.; Podewin, T.; Broichhagen, J.; Hodson, D.J. Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nature Communications, 2020, 11, 467. doi: 10.1038/s41467-020-14309-w
