Cyanine5 NHS ester

Cat. # Quantity Price Lead time
13020 1 mg $110.00 in stock
23020 5 mg $210.00 in stock
43020 25 mg $410.00 in stock
53020 50 mg $695.00 in stock
63020 100 mg $1190.00 in stock

During last years, Cyanine5 flurophore (analog of Cy5®) has become an incredibly popular label in life science research and diagnostics. Fluorophore emission has maximum in red region, where many CCD detectors have maximum sensitivity, and biological objects have low background. Dye color is very intense, therefore quantity as small as 1 nanomol can be detected in gel electrophoresis by naked eye.

This Cyanine5 NHS ester (analog to Cy5® NHS ester) is a reactive dye for the labeling of amino-groups in peptides, proteins, and oligonucleotides. This dye requires small amount of organic co-solvent (such as DMF or DMSO) to be used in labeling reaction (please see our recommended protocol for more details). This reagent is ideal for very cost-efficient labeling of soluble proteins, as well as all kinds of peptides and oligonucleotides. This reagent also works well in organic solvents for small molecule labeling. For more sophisticated targets such as easily degradable proteins, when use of DMF or DMSO is undesirable, consider using water-soluble sulfo-Cyanine 5 NHS ester which does not require co-solvent, and has very similar fluorescent properties.

Cyanine5 fluorophore is compatible with various instrumentation including many fluorescent microscopes, imagers, scanners, and fluorescence readers. A number of various Cyanine5 analogs exist - Cyanine5 NHS ester can replace activated esters of Cy5®, Alexa Fluor 647, and DyLight 649.

Cy5 excitation and emission spectra

Customers also purchased with this product

Cyanine7 hydrazide

Carbonyl reactive NIR fluorophore for the labeling of aldehydes, ketones, including glycoproteins subjected to periodate oxidation.

Cyanine3 amine

Cyanine3 is an fluorophore with free amino group (amino-dye). It can be conjugated with NHS esters, carboxy groups (after activation), and epoxides.

DMF (dimethylformamide), labeling grade

Dry high purity amine free solvent for NHS ester labeling.

General properties

Appearance: dark blue powder
Molecular weight: 616.19
CAS number: 1032678-42-4, 350686-88-3
Molecular formula: C36H42ClN3O4
Solubility: good in polar (DMSO, DMF) and chlorinated (DCM, chlroform) organic solvents, low solubility in water
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

Excitation maximum, nm: 646
ε, L⋅mol−1⋅cm−1: 250000
Emission maximum, nm: 662
Fluorescence quantum yield: 0.2

Product citations

  1. Leenders, J.; Baker, M.B.; Pijpers, I.; Lafleur, R.; Albertazzi, L.; Palmans, A.R.A.; Meijer, E.W. Supramolecular polymerisation in water; elucidating the role of hydrophobic and hydrogen-bond interactions. Soft Matter, 2016, in press. doi: 10.1039/c5sm02843d
  2. Schelpe, J.; Monté, D.; Dewitte, F.; Sixma, T.K.; Rucktooa, P. Structure of UBE2Z Enzyme Provides Functional Insight into Specificity in the FAT10 Protein Conjugation Machinery. Journal of Biological Chemistry, 2016, 291(2), 630–639. doi: 10.1074/jbc.M115.671545
  3. Liu, X.; Zhang, P.; He, D:; Rödl, W.; Preiß, T.; Rädler, J.O.; Wagner, E.; Lächelt, U. pH-reversible cationic RNase A conjugates for enhanced cellular delivery and tumor cell killing. Biomacromolecules, 2016, 17(1), 173–182. doi: 10.1021/acs.biomac.5b01289
  4. He, H.; Altomare, D.; Ozer, U.; Xu, H.; Creek, K.; Chen, H.; Xu, P. Cancer cell-selective killing polymer/copper combination. Biomaterials Science, 2016, 4(1), 115–120. doi: 10.1039/c5bm00325c
  5. van der Velde, J.H.M.; Oelerich, J.; Huang, J.; Smit, J.H.; Aminian Jazi, A.; Galiani, S.; Kolmakov, K.; Guoridis, G.; Eggeling, C.; Herrmann, A.; Roelfes, G.; Cordes, T. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nature Communications, 2016, 7, 10144. doi: 10.1038/ncomms10144
  6. Poolman, J.; Maity, C.; Boekhoven, J.; van der Mee, L.; le Sage, V.; Groenewold, M.; van Kasteren, S.; Versluis, F.; van Esch, J.; Eelkema, R. A toolbox for controlling the properties and functionalisation of hydrazone-based supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 852–858. doi: 10.1039/C5TB01870F
  7. Chu, D.; Gao, J.; Wang, Z. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection. ACS Nano, 2015, 9(12), 11800–11811. doi: 10.1021/acsnano.5b05583
  8. Albertazzi, L.; van der Veeken, N.; Baker, M.B.; Palmans, A.R.A.; Meijer, E.W. Supramolecular copolymers with stimuli-responsive sequence control. Chemical Communications, 2015, 51(90), 16166–16168. doi: 10.1039/c5cc06951c
  9. Yang, J.; Zhang, R.; Radford, D.C.; Kopeček, J. FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. Journal of Controlled Release, 2015, 218, 36–44. doi: 10.1016/j.jconrel.2015.09.045
  10. Wang, C.; Wang, Y.; Li, Y.; Bodemann, B.; Zhao, T.; Ma, X.; Huang, G.; Hu, Z.; DeBerardinis, R.J.; White, M.A.; Gao, J. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nature Communications, 2015, 6, 8524. doi: 10.1038/ncomms9524
  11. Vanparijs, N.; De Coen, R.; Laplace, D.R.; Louage, B.; Maji, S.; Lybaert, L.; Hoogenboom, R.; De Geest, B. Transiently responsive protein-polymer conjugates via a grafting-from RAFT approach: for intracellular co-delivery of proteins and immune-modulators. Chemical Communications, 2015, 51, 13972–13975. doi: 10.1039/c5cc04809e
  12. Klykov, O.; Weller, M.G. Quantification of N-hydroxysuccinimide and N-hydroxysulfosuccinimide by hydrophilic interaction chromatography (HILIC). Analytical Methods, 2015, 7, 6443–6448. doi: 10.1039/c5ay00042d
  13. Shi, Q.; Zhang, L.; Liu, M.; Zhang, X.; Zhang, X.; Xu, X.; Chen, S.; Li, X.; Zhang, J. Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells. Biomaterials, 2015, 67, 169–182. doi: 10.1016/j.biomaterials.2015.07.023
  14. Chen, L.; An, H.; Doyle, P.S. Synthesis of non-spherical microcapsules through controlled polyelectrolyte coating of hydrogel templates. Langmuir, 2015, 31(33), 9228–9235. doi: 10.1021/acs.langmuir.5b02200
  15. Li, L.; Sun, W.; Zhong, J.; Yang, Qi.; Zhu, X.; Zhou, Z.; Zhang Z.; Huang, Y. Multistage Nanovehicle Delivery System Based on Stepwise Size Reduction and Charge Reversal for Programmed Nuclear Targeting of Systemically Administered Anticancer Drugs. Advanced Functional Materials, 2015, 25(26), 4101–4113. doi: 10.1002/adfm.201501248
  16. Baker, Matthew B. and Albertazzi, Lorenzo and Voets, Ilja K. and Leenders, Christianus M.A. and Palmans, Anja R.A. and Pavan, Giovanni M. and Meijer, E.W. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer. Nature Communications, 2015, 6, 6234. doi: 10.1038/ncomms7234
  17. Unciti-Broceta, J.D.; Cano-Cortés, V.; Altea-Manzano, P.; Pernagallo, S.; Díaz-Mochón, J.J.; Sánchez-Martín, R.M. Number of Nanoparticles per Cell through a Spectrophotometric Method – A key parameter to Assess Nanoparticle-based Cellular Assays. Scientific Reports, 2015, 5, 10091. doi: 10.1038/srep10091
  18. Medina, S.H.; Schneider, J.P. Cancer cell surface induced peptide folding allows intracellular translocation of drug. Journal of Controlled Release, 2015, 209, 317–326. doi: 10.1016/j.jconrel.2015.05.267
  19. Pereira, P.M.; Almada, P.; Henriques, R. High-content 3D multicolor super-resolution localization microscopy. Methods in Cell Biology, 2015, 125, 95–117. doi: 10.1016/bs.mcb.2014.10.004
  20. Chiang, W.-L.; Lin, T.-T.; Sureshbabu, R.; Chia, W.-T.; Hsiao, H.-C.; Liu, H.-Y.; Yang, C.-M.; Sung, H.-W. A rapid drug release system with a NIR light-activated molecular switch for dual-modality photothermal/antibiotic treatments of subcutaneous abscesses. Journal of Controlled Release, 2015, 199, 53–62. doi: 10.1016/j.jconrel.2014.12.011
  21. Geertsema, H.J.; Duderstadt, K.E.; van Oijen, A.M. Single-molecule observation of prokaryotic DNA replication. Methods in Molecular Biology, 2015, 1300, 219–238. doi: 10.1007/978-1-4939-2596-4_14
  22. Nooney, R.; O’Connell, C.; Roy, S.; Boland, K.; Keegan, G.; Kelleher, S.; Daniels, S.; McDonagh, C. Synthesis and characterisation of far-red fluorescent cyanine dye doped silica nanoparticles using a modified microemulsion method for application in bioassays. Sensors and Actuators B: Chemical, 2015, 221, 470–479. doi: 10.1016/j.snb.2015.06.117
  23. Zhang, Z.; Kenny, S.J.; Hauser, M.; Li, W.; Xu, K. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Nature Methods, 2015, 12(10), 935–938. doi: 10.1038/nmeth.3528
  24. Chen, K.; Xu, X.; Guo, J.W.; Zhang, X.; Han, S.; Wang, R.; Li, X.; Zhang, J. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry. Biomacromolecules, 2015, 16(11), 3574–3583. doi: 10.1021/acs.biomac.5b01056
  25. Dogandzhiyski, P.; Ghidini, A.; Danneberg, F.; Strömberg, R.; Göbel, M.W. Studies on Tris(2-aminobenzimidazole)-PNA Based Artificial Nucleases: A Comparison of Two Analytical Techniques. Bioconjugate Chemistry, 2015, 26(12), 2514–2519. doi: 10.1021/acs.bioconjchem.5b00534
  26. Bird, G.H., Boyapalle, S.; Wong, T.; Opoku-Nsiah, K.; Bedi, R.; Crannell, W.C.; Perry, A.F.; Nguyen, H.; Sampayo, V.; Devareddy, A.; Mohapatra, S.; Mohapatra S.S.; Walensky, L.D. Mucosal delivery of a double-stapled {RS}V peptide prevents nasopulmonary infection. Journal of Clinical Investigation, 2014, 124(5), 2113–2124. doi: 10.1172/jci71856
  27. Basu, R.; Lai, L.-T.; Meng, Z.; Wu, J.; Shao, F.; Zhang, L.-F. Using Amino-Labeled Nucleotide Probes for Simultaneous Single Molecule RNA-DNA FISH. PLoS ONE, 2014, 9(9), e107425. doi: 10.1371/journal.pone.0107425
  28. Bříza, T.; Rimpelová, S.; Králová, J.; Záruba, K.; Kejík, Z.; Ruml, T.; Martásek, P.; Král, V. Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization. Dyes and Pigments, 2014, 107, 51-59. doi: 10.1016/j.dyepig.2013.12.021
  29. Bamrungsap, S.; Apiwat, C.; Chantima, W.; Dharakul, T.; Wiriyachaiporn, N. Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchimica Acta, 2014, 181(1–2), 223-230. doi: 10.1007/s00604-013-1106-4
  30. Duellberg, C.; Trokter, M.; Jha, R.; Sen, I.; Steinmetz, M.O.; Surrey, T. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nature Cell Biology, 2014, 16(8), 804-811. doi: 10.1038/ncb2999
  31. Geertsema, H.J.; Kulczyk, A.W.; Richardson, C.C.; van Oijen, A.M. Single-molecule studies of polymerase dynamics and stoichiometry at the bacteriophage T7 replication machinery. Proceedings of the National Academy of Sciences of the U.S.A., 2014, 111(11), 4073-4078. doi: 10.1073/pnas.1402010111
  32. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  33. Hu, X.; Wang, Q.; Liu, Y.; Liu, H.; Qin, C.; Cheng, K.; Robinson, W.; Gray, B.D.; Pak, K.Y.; Yu, A. et al. Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes. Biomaterials, 2014, 35(26), 7511-7521. doi: 10.1016/j.biomaterials.2014.05.042
  34. Novo, L.; Rizzo, L.Y.; Golombek, S.K.; Dakwar, G.R.; Lou, B.; Remaut, K.; Mastrobattista, E.; van Nostrum, C.F.; Jahnen-Dechent, W.; Kiessling, F. et al. Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. Journal of Controlled Release, 2014, 195, 162-175. doi: 10.1016/j.jconrel.2014.08.028
  35. Zhang, Y.; Ge, C.; Zhu, C.; Salaita, K. DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nature Communications, 2014, 5, 5167-5167. doi: 10.1038/ncomms6167
  36. Chen, H.; Xiao, L.; Anraku, Y.; Mi, P.; Liu, X.; Cabral, H.; Inoue, A.; Nomoto, T.; Kishimura, A.; Nishiyama, N. et al. Polyion Complex Vesicles for Photoinduced Intracellular Delivery of Amphiphilic Photosensitizer. Journal of the American Chemical Society, 2014, 136(1), 157-163. doi: 10.1021/ja406992w
  37. Lee, S.; Ashizawa, A.T.; Kim, K.S.; Falk, D.J.; Notterpek, L. Liposomes to Target Peripheral Neurons and Schwann Cells. PLoS ONE, 2013, 8(11), e78724. doi: 10.1371/journal.pone.0078724
  38. Albertazzi, L.; Martinez-Veracoechea, F.J.; Leenders, C.M.A.; Voets, I.K.; Frenkel, D.; Meijer, E.W. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(30), 12203-12208. doi: 10.1073/pnas.1303109110
  39. Cheng, M.-C.; Leske, A.T.; Matsuoka, T.; Kim, B.C.; Lee, J.; Burns, M.A.; Takayama, S.; Biteen, J.S. Super-Resolution Imaging of PDMS Nanochannels by Single-Molecule Micelle-Assisted Blink Microscopy. The Journal of Physical Chemistry B, 2013, 117(16), 4406-4411. doi: 10.1021/jp307635v
  40. Haller, A.; Altman, R.B.; Souliere, M.F.; Blanchard, S.C.; Micura, R. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(11), 4188-4193. doi: 10.1073/pnas.1218062110
  41. He, H.; Chen, S.; Zhou, J.; Dou, Y.; Song, L.; Che, L.; Zhou, X.; Chen, X.; Jia, Y.; Zhang, J. et al. Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials, 2013, 34(21), 5344-5358. doi: 10.1016/j.biomaterials.2013.03.068
  42. Rimpelová, S.; Bříza, T.; Králová, J.; Záruba, K.; Kejík, Z.; Císařová, I.; Martásek, P.; Ruml, T.; Král, V. Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjugate Chemistry, 2013, 24(9), 1445-1454. doi: 10.1021/bc400291f
  43. Soulière, M.F.; Altman, R.B.; Schwarz, V.; Haller, A.; Blanchard, S.C.; Micura, R. Tuning a riboswitch response through structural extension of a pseudoknot. Proceedings of the National Academy of Sciences of the U.S.A., 2013, 110(35), E3256-E3264. doi: 10.1073/pnas.1304585110
  44. Yang, H.; Mao, H.; Wan, Z.; Zhu, A.; Guo, M.; Li, Y.; Li, X.; Wan, J.; Yang, X.; Shuai, X. et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials, 2013, 34(36), 9124-9133. doi: 10.1016/j.biomaterials.2013.08.022
  45. Pecqueur, L.; Duellberg, C.; Dreier, B.; Jiang, Q.; Wang, C.; Pluckthun, A.; Surrey, T.; Gigant, B.; Knossow, M. A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Proceedings of the National Academy of Sciences of the U.S.A., 2012, 109(30), 12011-12016. doi: 10.1073/pnas.1204129109
  46. Sparks, J.; Slobodkin, G.; Matar, M.; Congo, R.; Ulkoski, D.; Rea-Ramsey, A.; Pence, C.; Rice, J.; McClure, D.; Polach, K.J. et al. Versatile cationic lipids for siRNA delivery. Journal of Controlled Release, 2012, 158(2), 269-276. doi: 10.1016/j.jconrel.2011.11.006
Show more (42)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.
translate