DBCO NHS ester

Cat. # Quantity Price Lead time
34720 10 mg $80 in stock
44720 25 mg $110 in stock
54720 50 mg $135 in stock
64720 100 mg $210 in stock
94720 1 g $1000 in stock
K4720 5 g $3570 in stock
Found better price? Let us know and we will propose the way forward!

Dibenzocyclooctyne (ADIBO, DBCO) is one of the most reactive cycloalkynes for strain-promoted alkyne azide cycloaddition (SPAAC) – a copper-free click chemistry reaction.

DBCO reacts instantly with azides. The reaction rate is much higher than that of copper-catalyzed reaction, and reactions with many other cyclooctynes. Unlike some other cyclooctynes, DBCO does not react with tetrazines - this allows to carry out orthogonal conjugation of azides with DBCO, and trans-cyclooctenes with tetrazines.

This amine-reactive NHS ester provides easy attachment of the reactive moiety to almost any primary or secondary amine group, such as protein, peptide, or small molecule amine.

Customers also purchased with this product

sulfo-Cyanine3 alkyne

A water-soluble dye alkyne for copper-catalyzed click chemistry. The fluorophore sulfo-Cyanine3 is a bright and photostable dye for the Cy3® channel.

sulfo-Cyanine3 maleimide

Water soluble thiol-reactive derivative of sulfo-Cyanine3, a Cy3 analog.

1-Ethynyl pyrene

Pyrene is a polyaromatic hydrocarbon containing four fused rings. This reagent contains a terminal alkyne group for click chemistry and other reactions, such as Sonogashira coupling.

General properties

Appearance: off white solid
Mass spec M+ increment: 315.1
Molecular weight: 430.45
CAS number: 1384870-47-6
Molecular formula: C25H22N2O5
IUPAC name: 6-{2-Azatricyclo[10.4.0.04,9]hexadeca-1(16),4,6,8,12,14-hexaen-10-yn-2-yl}-6-oxohexanamide
Solubility: good in DCM, DMF, DMSO
Quality control: NMR 1H, HPLC-MS (95%)
Storage conditions: Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download
Product specifications

Product citations

  1. Gabold, B.; Adams, F.; Brameyer, S.; Jung, K.; Ried, C. L.; Merdan, T.; Merkel, O. M. Transferrin-Modified Chitosan Nanoparticles for Targeted Nose-to-Brain Delivery of Proteins. Drug Deliv. and Transl. Res., 2023, 13(3), 822–838. doi: 10.1007/s13346-022-01245-z
  2. Edr, A.; Wrobel, D.; Krupková, A.; Šťastná, L. Č.; Cuřínová, P.; Novák, A.; Malý, J.; Kalasová, J.; Malý, J.; Malý, M.; Strašák, T. Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects. International Journal of Molecular Sciences, 2022, 23(4), 2114. doi: 10.3390/ijms23042114
  3. Jo, M. H.; Li, J.; Jaumouillé, V.; Hao, Y.; Coppola, J.; Yan, J.; Waterman, C. M.; Springer, T. A.; Ha, T. Single-Molecule Characterization of Subtype-Specific Β1 Integrin Mechanics. Nature Communications, 2022, 13(1), 7471. doi: 10.1038/s41467-022-35173-w
  4. Xu, L.; Faruqu, F.N.; Liam-or, R.; Abu Abed, O.; Li, D.; Venner, K.; Errington, R.J.; Summers, H.; Wang, J.T.-W.; Al-Jamal, K.T. Design of experiment (DoE)-driven in vitro and in vivo uptake studies of exosomes for pancreatic cancer delivery enabled by copper-free click chemistry-based labelling. Journal of Extracellular Vesicles, 2020, 9(1), 1779458. doi: 10.1080/20013078.2020.1779458
Show more (5)
Your item has been added. View your cart or proceed to checkout
The count of items is incorrect.